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SUPPLEMENTARY MATERIAL

Supplementary information on data preparation and statistical approaches

Data preparation
The information available for each sample in the EU-HYDI varies and chemical, physical and hydraulic data were in many cases determined with different methods because of different standards applicable at the data providers’ institutions. Moisture retention and hydraulic conductivity data in EU-HYDI were measured with different methods. These included field or laboratory measurements or the combination of both. Sample sizes varied among the data sources. Harmonization of particle size fraction limits and organic carbon content was carried out (Weynants et al., 2013). We checked each samples to see if their water retention values decreased monotonously with decreasing matric potential. Part of the moisture retention curves was visually controlled and unreliable data was flagged. Uncharacteristic information was filtered out before our analysis. Texture classes were based on the modified FAO (FAO_MOD) (CEC, 1985) and USDA texture classes, with the addition of organic class after Wösten et al. (1999). For other measurements, harmonization was not performed because there are no sound correction measures. A lack of harmonization can lead to a decreased uniformity of the data-set and a reduced accuracy of pedotransfer functions derived from the measured data (Batjes, 2009).
We split the data-base by hydraulic properties to training and test sets. The goal of dividing the whole data-set into training and test sets was to achieve comparability among the tested PTFs. Results obtained by different statistical approaches should be compared on the same test-data set, even if predictions are made from training sets of different sample sizes or by using a different set of input variables in the same method.
Test sets contained randomly selected data amounting to 30% of the training set which had the fewest samples available to predict the given hydraulic property from the input parameters of interest. Sample sizes in the training data-sets also varied, but always contained at least 70% of samples eligible for the given prediction. Inclusion of samples from all USDA and FAO_MOD texture classes in the training sets were ensured, whenever possible.
The top-soil and sub-soil distinction of samples in the EU-HYDI was based on horizon names and sampling depth. Those samples of the database which were topmost A or O or H horizons or transitional horizons of A starting at 0 cm depth were considered as top-soil samples. Where there was no information about horizon designation in the data-set, layers with 0 cm top depth or samples that were entirely from the 0–30cm depth and whose top was within 0–5 cm depth were considered to represent the top-soil. The rest of the samples were considered as sub-soil samples. The 30-cm lower boundary for the top-soil was set in accordance with IPCC recommendations (IPCC, 2003) and as general practice for characterizing upper soil layers in Europe (Jones et al., 2005).
Soil hydraulic data were fitted with the Mualem-van Genuchten (MVG) model (Equations (S1), (S2) and (S3)). The model parameter boundaries were established as follows: θr ∈ [0; 0.35], θs ∈ [0.2; 0.85], α ∈ [0.00001; 0.99999], n ∈ [1.001; 15], K0 ∈ [0.001; 10000] and L ∈ [-5; 5]. Water retention values measured at matric potential smaller than -16 000 cm were not considered while fitting the model. The van Genuchten water retention model can be written as:
	, 							(S1)
where θ(h) is the water content of the soil (cm³ cm-3) at a given matric potential value (cm of water column); θr is the residual water content (cm³ cm-3); θs is the saturated water content (cm³ cm-3); and α (cm-1), n (-), and m (-) are fitting parameters 
The van Genuchten model can be coupled with the model of Mualem (1976) which describes the hydraulic conductivity curve (HCC). Provided that m=1-1/n (van Genuchten, 1980), it can be written as
,                                                                  (S2)
,	                                                                          (S3)
where K is the soil hydraulic conductivity (cm day-1); K0 is the hydraulic conductivity acting as a matching point at saturation (cm day-1); Se is the effective saturation (-) and L is a shape parameter related to pore tortuosity (-).
We estimated the parameters of the classic MVG model in our study despite its documented weaknesses. Our decision was determined because this approach is employed by the currently available simulation models. The classic MVG model may under-estimate the hydraulic conductivity close to saturation (Schaap & Leij, 2000) and may lead to unstable numerical solutions of the Richards equation (Richards, 1931) when parameter n is less than 2 (Ippisch et al., 2006). The introduction of an air-entry point in the MVG model improves the description of the HCC but not that of the MRC (Schaap & van Genuchten, 2006; Weynants et al., 2009). The modified model by Ippisch et al. (2006) needs a further parameter to those of the classic MVG and the modification suggested by Schaap & van Genuchten (2006) is data-base specific. Since not all environmental models have the modified MVG equations implemented, we developed PTFs to predict the parameters of the classic model (θr, θs, α, n, K0, L).
In EU-HYDI, the methods used to measure the soil hydraulic properties are diverse. Hence, the available number of data pairs [(θ, h) or (K, h)] for each sample can range from 1 up to several hundred when evaporation methods were used. Therefore, before fitting any model to these data, we filtered both training and test sets according to the following rules: (i) we considered only samples with at least five data pairs; (ii) for samples with more than 30 data pairs, we kept the first, that closest to saturation, and randomly selected up to two points within ranges between the following matric potential values: 0, -10, -20, -50, -100, -200, -250, -500, -1000, -2000, -5000, -10000, -15 000 and -16 000 cm. Using a similar number of data pairs for all samples reduced the bias towards samples with many observations in the calculation of the errors. For example, samples based on evaporation data had thousands of observations whereas others (such as from combination of sand/kaolin box and pressure plate measurements) had only five data pairs. The filtered data was then used to fit the MVG model. First, the van Genuchten model with m =1–1/n was fitted to the retention data. Then, for samples with conductivity data, both K0 and L were fitted, using the α and n values obtained from the retention data. The MRC was fitted for samples with at least five θ-h pairs. The HCC was subsequently fitted for samples for which the MRC could be fitted and at least five K-h pairs were available. The objective function to be minimized was the sum of squared residuals between observations and estimations. Given the skewed distribution of the hydraulic conductivity, the common base logarithm was used both as fitting parameter (log10(K0)) and in the objective function (Schaap & Leij, 2000). Although the algorithm converged in most cases, the parameters reached the boundaries in many cases. Only the samples for which the algorithm did converge were kept for the PTFs’ development (Figure 1 of the main text).
In EU-HYDI, many soil samples had water retention measurements at -330 cm matric potential, which is often considered as the laboratory equivalent for field capacity. However, numerous other samples did not have measurements available at exactly this value. To minimize this problem, only samples having measurements in between -300 to -350 cm matric potential (h) were selected for the predictions. For these samples, three criteria were then set: (i) either one measurement was required at exactly -330 cm, or (ii) one measurement smaller and one larger than -330 cm was required, or (iii) at least one measurement in the range between -282 and -354 cm (for which pF (log(-h)) can be rounded to 2.5) was required. For samples satisfying the first criterion, no approximation was needed (42% of available samples). For those satisfying the second criterion but not the first (6% of available data) a linear interpolation between the two closest measurements smaller and greater than -330 cm was made. We also tested calculating them with the van Genuchten model (Equation (S1)), after fitting the model on measured θ-h pairs, but we did not use this option because the linear approximation gave better results. For samples satisfying the third, but not the first two, criterion (52% of the samples), the measurement closest to -330 cm in the specified range was used as an approximation of field capacity. Samples that did not satisfy any of the three criteria were not considered for this part of the analysis.
We used logarithmic transformations of θr, α, n and K0 (log10(θr+1), log10(α), log10(n-1), log10(K0)) in the MVG parameter prediction (Vereecken et al., 1989; Wösten et al., 1999) and of KS (log10(KS)) in the point estimation (Lilly et al., 2008) as dependent variables.

Statistical approaches
Although the outcomes of class PTFs and the continuous PTF developed by RT were similar, the way the grouping of the data-set was achieved was different. Traditionally the groups (classes) of a class PTF are developer-determined, and whether all separated groups improve the model performance is not tested. The grouping in a tree-based PTF is data-driven. Although in class PTFs, MVG parameters are linked to each other, in univariate tree-based PTFs those are predicted independently from each other. However, in order to predict MVG parameters linked to each other, we also examined the prediction performance of multivariate regression trees.
All predictions were tested by using RT. We chose this method because it can describe both linear and non-linear interactions, is robust to outliers, can handle both quantitative and qualitative independent variables and is easy to interpret and implement (Breiman et al., 1984). It is also a well-established method in soil hydraulic research (McKenzie & Jacquier, 1997; Rawls et al., 2003; Lilly et al., 2008).
To predict parameters of the MVG model, the prediction methods were set up in the following ways. For cPTFs we fitted the MVG function to K-h pairs of the individual samples and grouped and averaged them by soil texture classes and top-soil and sub-soil distinction, by using VG parameters from VG class PTFs (separately for FAO_MOD and USDA).  For RT and LR, we built models with dependent variables K0 and L that were optimized on the observed conductivity curves under the constraint of alpha and n obtained by the VG PTFs. The parameters are not independent from one another and using the values of K0 and L that have been optimized with a set of α and n values different than that used when using the PTFs was not sensible.
Basic principles for fitting a multivariate regression tree (mRT) model  In mRT, as for RT, the objective was to maximize the homogeneity of the data at the terminal nodes and minimize the total impurity of terminal nodes (De’ath, 2002). The RTs and mRTs were built with the mvpart package of R. The model uses the least-squared deviation measure of impurity to choose the best split on the independent variable and best variable for the splitting. This criterion can be written as follows:
		, 						(S4)
where R(t) is the residual sum of squares in node t, N(t) is the number of cases in node t, yi is the value of the dependent variable, and ȳt is the mean of all values of the dependent variable in node t. In mRT, the multivariate sum of squared deviations about the mean was used to calculate the impurity. The algorithm selects the independent variable’s split that gives the largest decrease in residual sum of squares. The model accuracy is characterized by the residual sum of squares calculated for all terminal nodes of the tree (Breiman et al., 1984; De’ath, 2002).
To prevent over-fitting of the predictive models and incorporating data-subset specific random noise into the model instead of modelling the underlying relationship, we built a sequence of trees based on 100 ten-fold cross-validations. To build the model we used different values of the cost-complexity criterion (cp), starting from a very large tree (because of a small value of cp) to having no split of the data (because of a large value of cp). The developed regression trees were pruned by applying the 1 standard error (SE) rule (Breiman et al., 1984) on the 100 times cross-validated sequence of trees. We optimized the cp parameter to produce the smallest tree with the average residual sum of squared errors (R). The optimization was considered to be complete when the cross-validated test data set reached a R value within one standard deviation of its minimum value. In order to provide a single pruned tree, we rebuilt the tree on the whole training set by using the optimal model settings that resulted after tuning cp. 
Basic principles for fitting the linear regression (LR) model  For each predicted variable, we developed 100 linear regression equations by stepwise regression using R functions lm and step from package stats. Each equation was developed on 80% of the full training set and was randomly selected. Starting with only an intercept, at each step, the algorithm calculates the Akaike Information Criterion (AIC) for including each predictor, or excluding each of those already in the model. It selects the new model which helps decrease AIC the most. The algorithm stops when no further step can make a significant improvement, or when it reaches the maximum scope, including potentially using all the predictors. Among the 100 resulting models, we looked for the most frequently occurring number of predictors by the stepwise procedure and set it as the number of terms, n, in the final model. Next, we examined the frequency of each predictor being included in the first n selected terms. We then set the n most frequent predictors as input for the final model, regardless of the order in which they were included by the stepwise procedure. Finally, we fitted a linear model on 1000 re-sampled sets, with 80% of the training data in each re-sampled set. Each coefficient presented in the final model is the median of the 1000 values obtained on the re-samples.
Among the textural groups, sand and clay content had the largest absolute correlation with each other but clay was more correlated with soil hydraulic properties; therefore sand content was not included in the linear regression models. Calcium-carbonate content values were highly variable, making it a near-zero-variance predictor when the data-set was split in the cross-validation scheme, and thus we did not use it in the LR model.
As well as including raw independent variables (silt, clay, organic carbon, BD, pH and CEC) in the LR model, we tested how the reliability of the prediction changes if transformation and interactions of those soil properties such as with ten-based logarithmic, reciprocal, or squared transformations of the variables were also included in the LRt model. Multi-collinearity should be prevented in linear models. Therefore, in the LRt2 model we kept only one type of independent variables for each soil input parameter (either with or without transformation) and always that having its distribution closest to normality. Normality was assessed with a visual examination of the Q-Q plot, and taking into account values of Skewness and Kurtosis. We used the selected independent variables and top-soil/sub-soil distinction in the linear model (LRt2). We kept the best of the three possible linear models (LR, LRt, LRt2) for further model comparison.
Statistics to measure model performance  A global root mean square error (RMSE) was calculated both for point and parameter estimations as:
[bookmark: _Ref364325968].				(S5)
In addition, the mean error (ME) was also calculated for parameter estimations using Equation  (6 ) to analyse the prediction error by matric potential value ranges between 0, -5, -10, -20, -50, -100, -200, -250, -500, -1000, -2000, -5000, -15 000 and -16 000 cm as:
,						(S6)
where yi is the measured soil water content or logarithmic transformation of saturated or unsaturated hydraulic conductivity, ŷi the predicted soil water content or logarithmic transformation of saturated or unsaturated hydraulic conductivity, N the number of yi and ŷi data pairs and MSE the mean squared error. To test the reliability of parameter estimations (MRC and HCC), values of θ(h) and K(h) were calculated with predicted MVG parameters and then compared with the original measured θ(h) and K(h) values in the data-set for matric potential values that were available. 


Mean error of recommended MRC and HCC predictions by matric potential values.

Figure S1a   MRC predictions (calculated for the TEST_CHEM+ set, N = 288)

 

Figure S1b HCC prediction (calculated for the TEST_BASIC set, N = 176)



Recommended prediction models for regional to continental scale applications in Europe 

Table S1 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property)a.
	Number of model indicated in Table 5
	Predicted soil hydraulic property
	Type of model
	Prediction model

	(1)
	θS
/ cm3cm-3
	RT
	Rule 1
IF   FAO_MOD=coarse,medium,medium fine AND   T/S=sub
θS =0.416

Rule 2
IF   FAO_MOD=coarse,medium,medium fine AND   T/S=top
θS =0.467

Rule 3
IF   FAO_MOD=fine
θS =0.475

Rule 4
IF   FAO_MOD=very fine
θS =0.564

Rule 5
IF   FAO_MOD=organic
θS =0.847


	(2)
	θS
/ cm3cm-3
	RT
	Rule 1 
IF   FAO_MOD=coarse,medium,medium fine   AND   OC< 0.11
θS =0.365

Rule 2 
IF   FAO_MOD=coarse,medium,medium fine   AND   OC>=0.11  AND OC< 0.17
θS =0.393

Rule 3 
IF   OC>=0.17   AND   OC< 1.74 AND FAO_MOD=coarse
θS =0.399

Rule 4 
IF   FAO_MOD=medium   AND   OC>=0.90   AND   OC< 1.74   AND   T/S=sub
θS =0.389

Rule 5 
IF   FAO_MOD=medium   AND   OC>=0.90   AND   OC< 1.74   AND   T/S=top
θS =0.435

Rule 6 
IF   OC>=0.17   AND   OC< 0.90   AND   FAO_MOD=medium
θS =0.427

Rule 7 
IF   OC>=0.17   AND    OC< 0.32   AND FAO_MOD=medium fine
θS =0.412

Rule 8 
IF   FAO_MOD=medium fine   AND    OC>=0.32   AND   OC< 1.74
θS =0.453

Rule 9 
IF   FAO_MOD=fine,very fine   AND   OC< 0.63
θS =0.434

Rule 10 
IF   OC>=0.63   AND   OC< 1.74   AND   FAO_MOD=fine
θS =0.482

Rule 11 
IF   OC>=0.63   AND   OC< 1.74   AND FAO_MOD=very fine
θS =0.557

Rule 12 
IF   OC>=1.74   AND   OC< 2.21   AND   FAO_MOD=coarse,fine,medium
θS =0.461

Rule 13 
IF   OC>=3.79   AND   OC<4.64   AND   T/S=top   AND   FAO_MOD=fine
θS =0.377

Rule 14 
IF  OC< 3.79   AND   OC>=1.74   AND   T/S=top   AND   FAO_MOD=fine
θS =0.471

Rule 15 
IF      OC>= 2.21   AND   OC<4.64   AND   T/S=top   AND   FAO_MOD=coarse,medium
θS =0.488

Rule 16 
IF   OC>= 2.21   AND   OC<4.64   AND   T/S=sub   AND   FAO_MOD=coarse,medium
θS =0.477

Rule 17 
IF   OC>= 2.21   AND   OC<4.64   AND   T/S=sub   AND   FAO_MOD=fine
θS =0.570

Rule 18 
IF   FAO_MOD=medium fine   AND   OC< 3.11   AND   OC>=1.74
θS =0.502

Rule 19 
IF   FAO_MOD=medium fine   AND   OC>=3.11   AND   OC<4.64
θS =0.596

Rule 20 
IF   OC>=1.74   AND OC<4.64   AND   FAO_MOD=very fine
θS =0.628

Rule 21 
IF   OC>=4.64   AND   OC< 7.85   AND   FAO_MOD=coarse,medium
θS =0.531

Rule 22 
IF   FAO_MOD=coarse,medium   AND   OC>=7.85   AND   OC<10.89
θS =0.594

Rule 23 
IF   OC>=4.64   AND   OC<10.89   AND   FAO_MOD=fine,medium fine,very fine
θS =0.625

Rule 24 
IF   OC>=10.89   AND   OC< 17.33
θS =0.676

Rule 25 
IF   OC>=17.33   AND   OC<30.34
θS =0.771

Rule 26 
IF   OC>=30.34 AND   OC< 48.63
θS =0.851

Rule 27 
IF   OC>=48.63
θS =0.914


	(3)
	θS
/ cm3cm-3
	RT
	Rule 1 
IF   USDA=S,SCL   AND   T/S=sub 
θS =0.381

Rule 2 
IF   USDA=SL   AND   T/S=sub 
θS =0.407

Rule 3 
IF   USDA=CL,L,LS,SiL    AND   T/S=sub 
θS =0.428

Rule 4 
IF   USDA=CL,L,LS,S,SCL,SiL,SL    AND   T/S=top 
θS =0.465

Rule 5 
IF   USDA=Si,SiC,SiCL 
θS =0.470

Rule 6 
IF   USDA=C,SC
θS =0.520

Rule 7 
IF   USDA=O   AND T/S=top
θS =0.767

Rule 8 
IF   USDA=O   AND T/S=sub
θS =0.865


	(4)
	θS
/ cm3cm-3
	RT
	Rule 1
IF   OC< 0.11 AND   Sa>=37.37 AND   Cl>=11.55
θS =0.328

Rule 2
IF   OC< 0.11 AND   Sa>=37.37 AND   Cl< 11.55
θS =0.374

Rule 3
IF   OC< 1.74 AND   OC>=0.90 AND   Sa>=37.37 AND   T/S=sub
θS =0.375

Rule 4
IF   OC< 0.90 AND   OC>=0.11 AND   Sa>=37.37 AND   T/S=sub
θS =0.399

Rule 5
IF   OC< 1.74 AND   OC>=0.11 AND   Sa>=37.37 AND   T/S=top
θS =0.418

Rule 6
IF   OC< 0.33 AND   Sa< 37.37
θS =0.406

Rule 7 
IF   OC< 1.74 AND   OC>=0.33 AND   Sa< 37.37 AND Sa>=5.39 AND   CL< 49.25
θS =0.451

Rule 8
IF  OC< 1.74 AND   OC>=0.33 AND   Sa< 5.39 AND   Cl< 49.25
THS=0.499

Rule 9
IF   OC< 0.63 AND   OC>=0.33 AND   Sa< 37.37 AND   Cl>=49.25
θS =0.463

Rule 10
IF   OC< 1.74 AND   OC>=0.63 AND   Sa< 37.37 AND   Cl>=49.25
θS =0.532

Rule 11
IF   OC>=3.21 AND   OC< 4.64 AND   Cl< 52.15 AND   Si< 59.03 AND   Sa< 4.05
θS =0.382

Rule 12
IF   OC>=1.74 AND   OC< 3.21 AND   Cl< 52.15 AND   Si< 59.03 AND   Sa< 4.05
θS =0.525

Rule 13
IF   OC>=1.74 AND   OC< 2.78  AND   Cl< 52.15 AND   Si< 59.03 AND   Sa>=4.05
θS =0.461

Rule 14
IF   OC>=2.78 AND   OC< 4.64 AND   Cl< 52.15 AND   Si< 59.03 AND   Sa>=4.05
θS =0.490

Rule 15
IF   OC>=1.74 AND   OC< 4.64 AND   Cl< 52.15 AND   Si>=59.03
θS =0.522

Rule 16
IF   OC>=1.74 AND   OC< 4.64 AND   Cl>=52.15
THS=0.593

Rule 17
IF   OC>=4.64 AND   OC< 7.85 AND   Sa>=29.51
θS =0.531

Rule 18
IF   OC>=7.85 AND   Sa>=29.51
θS =0.595

Rule 19
IF   OC>=4.64 AND   Sa< 29.51 AND   T/S=top
θS =0.587

Rule 20
IF   OC>=4.64 AND   Sa< 29.51 AND   T/S=sub
θS =0.695


	(5)
	θS
/ cm3cm-3
	LRt
	θS = 0.6819 - 0.06480 * (1/(OC+1)) - 0.11900 * BD2 - 0.02668 * T/S + 0.001489 * Cl + 0.0008031 * Si + 0.02321 * (1/(OC+1)) * BD2 + 0.01908 * BD2 * T/S - 0.0011090 * Cl * T/S - 0.00002315 * Si * Cl - 0.0001197 * Si * BD2 - 0.0001068 * Cl * BD2


	(6)
	θS
/ cm3cm-3
	LRt
	θS = 0.5653 - 0.07918 * BD2 + 0.001671 * pH2 + 0.0005438 * Cl + 0.001065 * Si  + 0.06836 * T/S - 0.00001382 * Cl * pH2 - 0.00001270 * Si * Cl - 0.0004784 * BD2 * pH2 - 0.0002836 * Si * BD2 + 0.0004158 * Cl * BD2 - 0.01686 *T/S * BD2 - 0.0003541 * Si * T/S -0.0003152 * T/S * pH2


	(7)
	θFC
/ cm3cm-3
	RT
	Rule 1 
IF   FAO_MOD=coarse   AND   T/S=sub 
θFC =0.157

Rule 2 
IF   FAO_MOD=coarse   AND   T/S=top
θFC =0.199

Rule 3 
F   FAO_MOD=medium   AND   T/S=sub
θFC =0.280

Rule 4 
IF   FAO_MOD=medium   AND   T/S=top
θFC =0.308

Rule 5 
IF   FAO_MOD=medium fine
θFC =0.326

Rule 6 
IF   FAO_MOD=fine, very fine
θFC =0.362

Rule 7 
IF   FAO_MOD=organic
θFC =0.575


	(8)
	θFC
/ cm3cm-3
	RT
	Rule 1 
IF   USDA=S
θFC =0.094

Rule 2 
IF   USDA=LS
θFC =0.165

Rule 3 
IF   USDA=Si,SL
θFC =0.236

Rule 4 
IF   USDA=SC,SCL   AND   T/S=sub
θFC =0.255

Rule 5 
IF   USDA=SC,SCL   AND   T/S=top
θFC =0.309

Rule 6 
IF   USDA=L,SiL
θFC =0.312

Rule 7 
IF   USDA=CL,SiCL   AND   T/S=sub
θFC =0.321

Rule 8 
IF   USDA=CL,SiCL   AND   T/S=top
θFC =0.355

Rule 9 
IF   USDA=C,SiC
θFC =0.373

Rule 10 
IF   USDA=O   AND   T/S=top
θFC =0.503

Rule 11 
IF   USDA=O   AND   T/S=sub
θFC =0.596


	(9)
	θFC
/ cm3cm-3
	LRt
	θFC = 0.2449 - 0.1887 * (1/(OC+1)) + 0.004527 * Cl + 0.001535 * Si + 0.001442 * Si * (1/(OC+1)) - 0.00005110 * Si * Cl + 0.0008676 * Cl * (1/(OC+1))


	(10)
	θWP
/ cm3cm-3
	RT
	Rule 1 
IF   FAO_MOD=coarse 
θWP =0.069

Rule 2 
IF   FAO_MOD=medium
θWP =0.140

Rule 3 
IF   FAO_MOD=medium fine
θWP =0.163

Rule 4 
IF   FAO_MOD=fine, organic   AND   T/S=top
θWP =0.233

Rule 5 
IF   FAO_MOD=fine, organic   AND   T/S=sub
θWP =0.268

Rule 6 
IF   FAO_MOD=very fine
θWP =0.325


	(11)
	θWP
/ cm3cm-3
	RT
	Rule 1 
IF   USDA=LS,S,Si
θWP =0.050

Rule 2 
IF   USDA=SL
θWP =0.100

Rule 3 
IF   USDA=L,SiL
θWP =0.136

Rule 4 
IF   USDA=SCL
θWP =0.164

Rule 5 
IF   USDA=CL,SC,SiCL
θWP =0.211

Rule 6 
IF   USDA=C,O,SiC   AND   T/S=top
θWP =0.251

Rule 7 
IF   USDA=C,O,SiC   AND   T/S=sub
θWP =0.292


	(12)
	θWP
/ cm3cm-3
	LRt
	θWP =  0.09878 + 0.002127* Cl - 0.0008366 * Si - 0.07670 *(1/(OC+1)) + 0.00003853 * Si * Cl + 0.002330 * Cl * (1/(OC+1)) + 0.0009498 * Si * (1/(OC+1))


	(13)
	log10(KS)
/ log10(cm day-1)
	RT
	Rule 1
IF   T/S=sub AND   FAO_MOD=fine,very fine
log10(KS)= 0.01

Rule 2
IF   T/S=sub AND    FAO_MOD=coarse,medium,medium fine,organic
log10(KS)= 0.77

Rule 3
IF   T/S=top AND   FAO_MOD=coarse,fine,medium fine,organic,very fine
log10(KS)= 1.14

Rule 4
IF   T/S=top AND   FAO_MOD=medium
log10(KS)= 2.23


	(14)
	log10(KS)
/ log10(cm day-1)
	RT
	Rule 1
IF   OC>=0.96 AND   OC< 0.97 AND   T/S=sub AND   FAO_MOD=fine,medium,medium fine
log10(KS)= -1.16

Rule 2
IF   OC>=0.96 AND   OC< 0.97 AND   T/S=sub AND   FAO_MOD=coarse,very fine
log10(KS)= -0.44

Rule 3
IF   OC>=1.52 AND   OC< 1.54 AND   T/S=sub
log10(KS)= -0.75

Rule 4
IF   OC>=2.04 AND   OC< 2.12 AND   T/S=sub
log10(KS)= -0.58

Rule 5
IF   OC>=2.65 AND   OC< 3.86 AND   T/S=sub
log10(KS)= -0.45

Rule 6
IF   OC>=3.86 AND   T/S=sub
log10(KS)= 0.37

Rule 7
IF   OC>=2.12 AND   OC< 2.65 AND   T/S=sub
log10(KS)= 1.29

Rule 8
IF   OC>=1.54 AND   OC< 2.04 AND   T/S=sub
log10(KS)= 1.33

Rule 9
IF   OC>=0.97 AND   OC< 1.52 AND   T/S=sub
log10(KS)= 1.13

Rule 10
IF   OC>=2.09 AND   OC< 2.10 AND   T/S=top
log10(KS)= -0.87

Rule 11
IF   OC>=2.4 AND   T/S=top AND   FAO_MOD=fine,medium fine,organic,very fine
log10(KS)= -0.38

Rule 12
IF   OC>=2.10 AND   OC< 2.40 AND   T/S=top AND   FAO_MOD=fine,medium fine,organic,very fine
log10(KS)= 1.67

Rule 13
IF   OC>=2.10 AND   T/S=top AND   FAO_MOD=coarse,medium
log10(KS)= 1.19

Rule 14
IF   OC>=1.52 AND   OC< 1.54 AND   T/S=top
log10(KS)= -0.49

Rule 15
IF   OC< 2.09 AND   OC>=1.54 AND   T/S=top
log10(KS)= 1.74

Rule 16
IF   OC>=0.96 AND   OC< 1.52 AND   T/S=top
log10(KS)= 1.80

Rule 17
IF   OC< 0.41 AND   OC>=0.40 AND   FAO_MOD=fine,medium,medium fine,very fine
log10(KS)= -1.56

Rule 18
IF   OC>=0.40 AND   OC< 0.41 AND   FAO_MOD=coarse
log10(KS)= -0.42

Rule 19
IF   OC< 0.96 AND   OC>=0.41 AND   FAO_MOD=fine,very fine
log10(KS)= 0.79

Rule 20
IF   OC< 0.96 AND   OC>=0.41 AND   FAO_MOD=coarse,medium,medium fine
log10(KS)= 1.54

Rule 21
IF   OC< 0.07
log10(KS)= 0.55

Rule 22
IF   OC< 0.40 AND   OC>=0.07 AND   FAO_MOD=fine,very fine
log10(KS)= 0.66

Rule 23
IF   OC< 0.40 AND   OC>=0.07 AND   FAO_MOD=medium,medium fine
log10(KS)= 1.30

Rule 24
IF   OC< 0.40 AND   OC>=0.07 AND   FAO_MOD=coarse
log10(KS)= 1.83


	(15)
	log10(KS)
/ log10(cm day-1)
	RT
	Rule 1
IF   USDA=C,O,SC,SCL,Si,SiC,SiCL
log10(KS)= 0.12

Rule 2
IF   USDA=CL,L,LS,S,SiL,SL AND   T/S=sub
log10(KS)= 0.82

Rule 3
IF   USDA=LS,S,SiL,SL AND   T/S=top
log10(KS)= 1.47

Rule 4
IF   USDA=CL,L AND   T/S=top
log10(KS)= 2.69


	(16)
	log10(KS)
/ log10(cm day-1)
	RT
	Rule 1
IF   OC>=0.96 AND   OC< 0.97 AND   T/S=sub
log10(KS)= -0.95

Rule 2
IF   OC>=1.52 AND   OC< 1.54 AND   T/S=sub
log10(KS)= -0.75

Rule 3
IF   OC>=2.04 AND   T/S=sub
log10(KS)= -0.25

Rule 4
IF   OC>=1.54 AND   OC< 2.04 AND   T/S=sub
log10(KS)= 1.33

Rule 5
IF   OC>=0.97 AND   OC< 1.52 AND   T/S=sub
log10(KS)= 1.13

Rule 6
IF   OC>=2.09 AND   OC< 2.10 AND   T/S=top
log10(KS)= -0.87

Rule 7
IF   OC>=2.42 AND   T/S=top AND   Sa< 38.95
log10(KS)= -0.22

Rule 8
IF   OC>=2.10 AND   OC< 2.42 AND   T/S=top AND   Sa< 38.95
log10(KS)= 1.82

Rule 9
IF   OC>=2.10 AND   T/S=top AND   Sa>=38.95
log10(KS)= 1.44

Rule 10
IF   OC>=0.96 AND   OC< 2.09 AND   T/S=top AND   Si< 10.85
log10(KS)= 0.01

Rule 11
IF   OC>=1.52 AND   OC< 1.54 AND   T/S=top AND   Si>=10.85
log10(KS)= -0.46

Rule 12
IF   OC>=1.54 AND   OC< 2.09 AND   T/S=top AND   Si>=10.85
log10(KS)= 1.72

Rule 13
IF   OC>=0.96 AND   OC< 1.52 AND   T/S=top AND   Si>=10.85
log10(KS)= 1.82

Rule 14
IF   OC< 0.41 AND   OC>=0.40 AND   Si>=32.11
log10(KS)= -1.81

Rule 15
IF   OC>=0.40 AND   OC< 0.41 AND   Si< 32.11
log10(KS)= -0.40

Rule 16
IF   OC< 0.96 AND   OC>=0.41 AND   Cl>=37.4
log10(KS)= 0.67

Rule 17
IF   OC< 0.96 AND   OC>=0.41 AND   Cl< 37.4
log10(KS)= 1.53

Rule 18
IF   OC< 0.07
log10(KS)= 0.55

Rule 19
IF   OC< 0.40 AND   OC>=0.07 AND   Sa< 5.77
log10(KS)= -0.11

Rule 20
IF   OC< 0.40 AND   OC>=0.07 AND   Sa< 69.72 AND   Sa>=5.77
log10(KS)= 1.28

Rule 21
IF   OC< 0.40 AND   OC>=0.07 AND   Sa>=69.72
log10(KS)= 1.96


	(17)
	log10(KS)
/ log10(cm day-1)
	LR
	log10KS = 0.40220 + 0.26122 * pH + 0.44565 * T/S - 0.02329 * Cl - 0.01265 * Si - 0.01038 * CEC


	(18)
	MRC and HCC (θr, θs, α, n, K0, L parameters of MVG model)
	MS
	
	 c
	Modified FAO texture classes
	MVG parameters

	
	
	θr
(cm3 cm-3)
	θs
(cm3 cm-3)
	α
(cm-1)
	n
(-)
	m
(-)
	K0
(cm day-1)
	L
(-)

	Top-soils
	coarse
	0.045
	0.438
	0.0478
	1.3447
	0.2563
	17.30
	-2.5587

	
	medium
	0.000
	0.459
	0.0309
	1.1920
	0.1611
	12.49
	-3.8570

	
	medium fine
	0.000
	0.432
	0.0094
	1.2119
	0.1749
	1.68
	-4.4460

	
	fine
	0.000
	0.478
	0.0403
	1.1176
	0.1053
	40.19
	-4.7040

	
	very fine
	0.000
	0.522
	0.0112
	1.1433
	0.1253
	2.69
	-5.0000

	
	organic
	0.111
	0.697
	0.0069
	1.4688
	0.3192
	1.42
	0.3284

	Sub-soils
	coarse
	0.057
	0.404
	0.0426
	1.5349
	0.3485
	9.68
	-1.8191

	
	medium
	0.000
	0.428
	0.0347
	1.1725
	0.1471
	11.78
	-4.9869

	
	medium fine
	0.000
	0.418
	0.0066
	1.2173
	0.1785
	1.87
	-3.3761

	
	fine
	0.000
	0.430
	0.0011
	1.2290
	0.1863
	0.07
	-1.8486

	
	very fine
	0.000
	0.511
	0.0002
	1.4048
	0.2882
	0.02
	5.0000

	
	organic
	0.000
	0.835
	0.0113
	1.2256
	0.1841
	10.81
	2.7337




	(19)
	MRC and HCC (θr, θs, α, n, K0, L parameters of MVG model)
	MS
	
	 
	USDA texture classes
	MVG parameters

	
	
	θr
(cm3 cm-3)
	θs
(cm3 cm-3)
	α
(cm-1)
	n
(-)
	m
(-)
	K0
(cm day-1)
	L
(-)

	Top-soils
	sand
	0.061
	0.411
	0.0258
	1.8005
	0.4446
	8.33
	-0.7306

	
	loamy sand
	0.052
	0.475
	0.0341
	1.4846
	0.3264
	8.95
	-1.8749

	
	sandy loam
	0.000
	0.441
	0.0750
	1.1904
	0.1599
	44.88
	-4.3523

	
	loam
	0.000
	0.491
	0.0347
	1.1931
	0.1618
	14.17
	-4.3000

	
	silt loam
	0.000
	0.424
	0.0074
	1.2545
	0.2029
	1.17
	-3.5496

	
	silt
	0.009
	0.465
	0.0042
	1.4853
	0.3267
	1.38
	-2.6418

	
	sandy clay loam
	0.000
	0.409
	0.0700
	1.1335
	0.1178
	43.63
	-5.0000

	
	clay loam
	0.000
	0.465
	0.1284
	1.1160
	0.1040
	195.15
	-5.0000

	
	silty clay loam
	0.000
	0.463
	0.0107
	1.1892
	0.1591
	1.38
	-2.6418

	
	sandy clay
	0.192
	0.523
	0.0351
	1.4455
	0.3082
	43.80
	-1.6202

	
	silty clay
	0.000
	0.455
	0.0309
	1.1110
	0.0999
	0.01
	5.0000

	
	clay
	0.000
	0.499
	0.0234
	1.1200
	0.1072
	17.07
	-5.0000

	
	organic
	0.111
	0.697
	0.0069
	1.4688
	0.3192
	1.42
	0.3284

	Sub-soils
	sand
	0.034
	0.368
	0.0356
	1.7767
	0.4372
	5.97
	-1.4096

	
	loamy sand
	0.037
	0.423
	0.0419
	1.4222
	0.2968
	14.84
	-1.9583

	
	sandy loam
	0.000
	0.437
	0.0681
	1.1966
	0.1643
	53.50
	-3.7279

	
	loam
	0.000
	0.432
	0.0336
	1.1701
	0.1454
	8.58
	-5.0000

	
	silt loam
	0.000
	0.422
	0.0077
	1.2483
	0.1989
	1.76
	-3.3247

	
	silt
	0.009
	0.465
	0.0042
	1.4853
	0.3267
	0.45
	-5.0000

	
	sandy clay loam
	0.000
	0.384
	0.0717
	1.1206
	0.1076
	37.09
	-5.0000

	
	clay loam
	0.000
	0.413
	0.0227
	1.1191
	0.1064
	12.35
	-5.0000

	
	silty clay loam
	0.000
	0.408
	0.0032
	1.1993
	0.1662
	0.45
	-5.0000

	
	sandy clay
	0.000
	0.365
	0.0016
	1.1812
	0.1534
	43.80
	-1.6202

	
	silty clay
	0.000
	0.442
	0.0003
	1.3861
	0.2786
	0.01
	5.0000

	
	clay
	0.000
	0.461
	0.0004
	1.3027
	0.2323
	0.04
	1.1840

	
	organic
	0.000
	0.835
	0.0113
	1.2256
	0.1841
	10.81
	2.7337




	(20)
	MRC (θr / cm3 cm-3, θs / cm3 cm-3, log10(α) / log10(cm-1), log10(n-1) / - parameters of VG model)
	RT (for θr) and LRt (for θs, log10(α) and log10(α))
		Rule 1
IF   Sa >= 2.00
θr = 0.041

Rule 2
IF   Sa < 2.00
θr = 0.179


	θs = 0.5056 - 0.1437 * (1/(OC+1)) + 0.0004152 * Si

	log10(α) = -1.3050 - 0.0006123 * Si - 0.009810 * Cl + 0.07611 * (1/(OC+1)) - 0.0004508 * Si * Cl + 0.03472 * Cl * (1/(OC+1)) - 0.01226 * Si * (1/(OC+1))
log10(n-1) = 0.01516 - 0.005775 * (1/(OC+1)) - 0.24885 * log10(CEC) - 0.01918 * Cl - 0.0005052 * Si - 0.007544 * pH2 - 0.02159 * Cl * (1/(OC+1)) + 0.01556 * Cl * log10(CEC) + 0.01477 * (1/(OC+1)) * pH2 + 0.0001121 * Si * Cl - 0.33198 * (1/(OC+1)) * log10(CEC)




	(21)
	MRC (θr / cm3 cm-3, θs / cm3 cm-3, log10(α) / log10(cm-1), log10(n-1) / - parameters of VG model)
	RT (for θr) and LR (for θs, log10(α) and log10(α))
		Rule 1
IF   Sa >= 2.00
θr = 0.041

Rule 2
IF   Sa < 2.00
θr = 0.179


	θs = 0.83080 - 0.28217 * BD + 0.0002728 * Cl + 0.000187 * Si

	log10(α) = -0.43348 - 0.41729 * BD - 0.04762 * OC + 0.21810 * T/S - 0.01581 * Cl - 0.01207 * Si

	log10(n-1) = 0.22236 - 0.30189 * BD -0.05558 * T/S - 0.005306 * Cl - 0.003084 * Si - 0.01072 * OC




	(22)
	MRC (θr (cm3 cm-3), θs (cm3 cm-3), log10(α) (log10(cm-1)) , log10(n-1) (-) parameters of VG model)
	RT (for θr) and LRt2 (for θs, log10(α) and log10(α))
		Rule 1
IF   Sa >= 2.00
θr = 0.041

Rule 2
IF   Sa < 2.00
θr = 0.179


	θs = 0.63052 - 0.10262 * BD2 + 0.0002904 * pH2 + 0.0003335 * Cl

	log10(α) = -1.16518 + 0.40515 * (1/(OC+1)) - 0.16063 * BD2 - 0.008372 * Cl - 0.01300* Si + 0.002166 * pH2 + 0.08233 * T/S

	[bookmark: _GoBack]log10(n-1) = -0.25929 + 0.25680 * (1/(OC+1)) - 0.10590 * BD2 - 0.009004 * Cl - 0.001223 * Si





aAbbreviations used in table: FAO_MOD: modified FAO texture classes (5 class for mineral soils and an organic class); USDA: USDA-SCS texture classes and an organic class (S: sand, LS: loamy sand, SL: sandy loam, L: loam, SiL: silt loam, Si: silt, SCL: sandy clay loam, CL: clay loam, SiCL: silty clay loam, SC: sandy clay, SiC: silty clay, C: clay, O: organic soils); Sa: sand content (50-2000 µm) (%); Si: silt content (2-50 µm) (%); Cl: clay content (0-2 µm) (%); T/S: top-soil (top) and sub-soil (sub) distinction; OC: organic carbon content (%); BD: bulk density (g cm-3); pH: pH in water; CEC: cation exchange capacity (meq 100g-1); θS: saturated water content (cm3 cm-3); θFC: water content at field capacity (cm3 cm-3); θWP: water content at wilting point (cm3 cm-3); KS: saturated hydraulic conductivity log10(cm day-1)]; MRC: moisture retention curve; HCC: hydraulic conductivity curve; VG: van Genuchten model; MVG: Mualem-van Genuchten model; MS: mean statistics of developer determined groups; RT: univariate regression tree; LR, LRt, LRt2: linear regression with or without transformation and interactions, further details of the LR models are provided in ‘Basic principles for fitting the linear regression (LR) model’ section.
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