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 SUMMARY 

In 2009, the European Commission extended the periodic Land Use/Land Cover Area Frame Survey (LUCAS) 
to sample and analyse the main properties of topsoil in 23 Member States of the European Union (EU). This 
topsoil survey represents the first attempt to build a consistent spatial database of the soil cover across 
the EU based on standard sampling and analytical procedures, with the analysis of all soil samples being 
carried out in a single laboratory. 

Approximately 20,000 points were selected out of the main LUCAS grid for the collection of soil samples. A 
standardised sampling procedure was used to collect around 0.5 kg of topsoil (0-20 cm). The samples were 
dispatched to a central laboratory for physical and chemical analyses. 

Subsequently, Malta and Cyprus provided soil samples even though the main LUCAS survey was not carried 
out on their territories. Cyprus has adapted the sampling methodology of LUCAS-Topsoil for (the southern 
part of the island) while Malta adjusted its national sampling grid to correspond to the LUCAS standards. 

Bulgaria and Romania have been sampled in 2012. However, the analysis is ongoing and the results are not 
included in this report. 

The final database contains 19,967 geo-referenced samples. 

This report provides a detailed insight to the design and methodology of the data collection and laboratory 
analysis. 

All samples have been analysed for the percentage of coarse fragments, particle size distribution (% clay, 
silt and sand content), pH (in CaCl2 and H2O), organic carbon (g/kg), carbonate content (g/kg),� phosphorous 
content  (mg/kg), total nitrogen content (g/kg), extractable potassium content (mg/kg) , cation exchange 
capacity (cmol(+)/kg) and multispectral properties. 

Subsequently, heavy metal content is being analysed but the result are not yet available and thus not 
included in this report. 

Based on the results of the survey, the regional variability of topsoil properties within the EU has been 
assessed and a comparative soil assessment of European regions and countries is presented. 

A series of predictive maps have been prepared using digital soil mapping methodologies that show the 
variation of individual parameters across the EU. In addition, the data have been used in studies to 
determine the SOC stock of the uppermost 20 cm of soil in the EU. 

While the LUCAS approach is designed for monitoring land use/land cover change, potential bias in the 
sampling design may not necessarily capture all soil characteristics in a country.  

Finally, a customised application has been developed for web browsers that allow users to view and query 
the LUCAS dataset in a variety of ways. 

  

 

 

KEYWORDS : European Union – Topsoil – Land use - LUCAS – Land use change – Land cover – EU Soil Thematic 

Strategy – Digital soil mapping – Viewer 
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KEY MESSAGES 

� In 2009, 19,967 topsoil samples with unique geo-referenced locations were collected in 23 
Member States of the European Union under the periodic Land Use/Land Cover Area Frame Survey 
(LUCAS).  

� Subsequently, Malta and Cyprus provided soil samples even though the main LUCAS survey was not 
carried on their territories.  

� This topsoil survey represents the first attempt to build a consistent spatial database of the soil 
cover across the European Union based on standard sampling and analytical procedures. 

� Around 0.5 kg of topsoil (0-20 cm) was collected at each soil sampling site.  

� The samples were dispatched to a central laboratory for physical and chemical analyses. 

� Bulgaria and Romania were sampled in 2012. The analysis of these data are not included in this 
report 

� The survey provides an assessment of the regional variability of topsoil properties within the EU. 

� Areas above 1000 m were not sampled. 

� 43% of all samples were collected from croplands. The corresponding area of croplands for the EU-
241 is approximately 34%. 

� Limitations in the sampling design and possible limitations in the modelling process may mean that 
procedures to develop continuous mapping of soil parameters may not capture all spatial variation. 
Consequently, certain areas may be subject to high uncertainty. 

� The characteristics of the topsoil (i.e. the uppermost 20 cm) may be very different to those deeper 
in the soil body. 

� There is an under sampling of peat soils in the Mediterranean region. 

� Some soil types are likely to be under represented (e.g. saline, shallow, urban). 

� The LUCAS database provides an excellent basis to assess changes in topsoil characteristics across 
the EU. 

������������������������������������������������������������

1�Figures�for�2000���excluding�Greece,�Malta�&�UK��
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1. Introduction 

Gergely Tóth and Luca Montanarella 

 

Soil information is essential for agricultural and environmental planning and monitoring. The availability of 
soil information in the Member States of the European Union (EU) varies greatly in many regards, including 

their scope, spatial representativity, date of collection sampling designs and analytical methods (Jones et 
al., 2005; Morvan et al., 2008). The variability of this information makes any pan-European comparative 
assessment difficult. However, there is an increasingly strong demand for soil data and information from 
policy makers to assess the state of soils at European level (COM(2006) 231, COM(2011) 571, COM(2012) 
46; Panagos et al. 2012). To serve this demand, the European Commission has extended the periodic Land 
Use/Land Cover Area Frame Survey (LUCAS) of the territory of the EU to sample and analyse the main 
properties of topsoil across the Union. This topsoil survey - although limited to the upper layer of soil cover 
(usually regarded as the uppermost 20-30 cm) - represents the first effort to build a consistent spatial 
database of the soil cover across the EU based on standard sampling and analytical procedures, with the 
analysis of all soil samples being carried out in a single laboratory. In addition, the LUCAS Topsoil Survey 
has the potential to be the basis for an EU wide harmonised soil monitoring. 

It is important to emphasise that the purpose of the LUCAS Topsoil Survey is to allow the production of 
statistics on soil characteristics with a harmonised methodology at EU level. It is underlined that the 
collected information will be used only for the production of EU or regional scale statistics and will not 
contain any information of personal or land properties character. The survey is not designed for compliance 
controls. Furthermore, given the relatively limited number of points analysed and their spatial distribution, 
results cannot be considered representative of local conditions and certainly not of field conditions. 

In this report, a detailed insight to the design and methodology of the LUCAS topsoil sampling and 
laboratory analysis is provided. Based on the results of the survey, the regional variability of topsoil 
properties within the EU is assessed. In this report, the differences in characteristics by soil attributes by 
main climatic regions, and by major land use/cover types, were evaluated. In addition to the introduction to 
the LUCAS survey, the results of a comparative soil assessment of European regions is presented. 

 

1.1 Principles of the LUCAS Topsoil Survey 

The LUCAS Programme started in 2001 as an area frame survey organised and managed by Eurostat (the 
statistical office of the European Union). The survey is based on the visual assessment of parameters that 
are deemed relevant for agricultural policy. Since 2006 the sampling design is based on the intersection of 
a regular 2 km x 2 km grid covering the territory of the EU. This results in around 1,000,000 geo-
referenced points. Each point has been classified according to seven land cover classes using 
orthophotographs or satellite images (Eurostat 2012). A sub-sample of around 200,000 points were 
selected for twenty-three Member States (EU-27 except Bulgaria, Romania, Malta and Cyprus) as a 
representative sample for the LUCAS 2009 survey as control points for the survey.  

With the scope of creating the first harmonised and comparable data on soil at European level to support 
policymaking, Eurostat, together with the European Commission’s Directorates-General for Environment (DG 
ENV) and the Joint Research Centre (JRC) designed a topsoil assessment component (‘LUCAS-Topsoil’) 
within the 2009 LUCAS survey.  

From the subset of 200,000 points of the general LUCAS survey, some 20,000 points were selected for the 
collection of soil samples using a standardised sampling procedure. These soil samples, weighting about 
0.5 kg each, were dispatched to a central laboratory for physical and chemical analyses. 

Subsequently, Malta and Cyprus provided soil samples even though the main LUCAS survey was not carried 
on their territories. Cyprus has adapted the sampling methodology of LUCAS-Topsoil for (the southern part 
of the island) while Malta adjusted its national sampling grid to correspond to the LUCAS standards. 
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The total number of soil samples collected in the frame of the LUCAS-Topsoil 2009 Survey for twenty-five 
Member States of the EU (EU-27 except Bulgaria and Romania) with exact geographical coordinates is 
19,967. 

The Soil Action of the JRC’s Institute for Environment and Sustainability was entrusted with the training of 
surveyors, management of sample logistics and execution of the analytical process of the 20,000 soil 
samples from the survey. All samples were registered and visually checked; mineral soils were air-dried and 
properly re-packed. After this registration and pre-treatment process, the samples were shipped for 
laboratory analysis. The samples analysed for particle size distribution and coarse fragments content, 
organic carbon, pH, multispectral reflectance, exchangeable acidity, carbonates content, total nitrogen, 
soluble phosphorus and potassium, cation exchange capacity and heavy metals content. 

The portion of the soil samples remaining after the completion of the laboratory analysis will be stored in 
the JRC’s European Soil Repository. 
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2. Soil sampling methodology 

Florence Carre, Ezio Rusco, Gergely Tóth, Arwyn Jones, Ciro Gardi and Vladimir Stolbovoy  

 

 

2.1 Methodology for the selection of soil sampling sites 

During the preparatory phase of the LUCAS-Topsoil Survey, the main issue was to design the most 
meaningful method for site selection. An appropriate survey design will allow the most diverse utilisation of 
the results without compromising their scientific merit.  

Two options seemed to be appropriate to follow. The first option was similar to the approach of the general 
LUCAS survey by taking the soil samples along a regular grid by systematically selecting 10% of the 
general LUCAS points according to a geometrically even distribution. This approach is applied in many 
national soil monitoring schemes (e.g. Denmark, UK, see Van Camp et al. 2004). The second option, which is 
also applied in established soil monitoring systems (e.g. France, Hungary, Poland, see Van Camp et al., 
2004), was to establish a stratified sampling scheme based on land use and terrain information. The 
LUCAS Topsoil Survey, apart from providing a basis for possible future soil monitoring, was also meant to 
build soil data to support mapping purposes. Since soil mapping, even topsoil mapping is best performed if 
design-based, a multi-stage stratified random sampling approach (McKenzie et al. 2008) was chosen.  

The following land use and terrain data (called covariates in the following text) were available on the 
European scale for the stratification of sampling location: elevation, slope, aspect (orientation of the slope), 
slope curvature and land use.  

The CORINE LANDCOVER 2000 dataset (CLC2000; 100 m resolution) was used for calculating the 
percentage area of each land use type. Since one of the aims of the LUCAS Topsoil Survey was to collect 
information that will allow both pan-European and interregional comparisons of soil status, land use 
percentages were calculated for each country that participated in the survey. The number of selected points 
was proportional to the percentage of land use coverage for each country. Due to the availability of soil 
data for forest land from the BIOSOIL exercise (Hiederer & Durrant 2010), a decision was taken to transfer 
1/3 of the ‘forest’ points to arable land and grassland areas. In addition to the CLC2000, 90 m elevation 
data from the Shuttle Radar Topography Mission (SRTM) were included in the spatial stratification to derive 
altitude, slope, curvature and aspect data. Since the minimum distance between the points of the general 
LUCAS survey is 2 km, the covariates which were initially resampled at 1 km resolution, have been 
transformed into 12 km resolution. A maximum of 36 LUCAS samples can occur in a 12 km by 12km grid 

cell.  

For the stratification, each landform attribute was divided into 8 quantiles (classes), meaning that in every 
quantile the number of pixels is the same. The quantiles of each landform attribute and the land use 
classes were combined leading to a number of approximately 20,000 strata (landscape elements with 
internally consistent characteristics) which were mapped (the quantile combination lead to different 
number of pixels per stratum). The strata which were in a raster form have been transformed into vector to 
obtain a unique value of the strata in each location. By this method, 30,795 unique strata (polygons) are 
assigned for the EU. The polygon number was attached to each LUCAS point. Within each polygon, the 
number of points per land use was calculated. If for each land use, the number was higher than three, the 
points were selected. Within the selected point subset, a random number between 1 and n (where n 
represents the total number of points per polygon and per land use, being higher than 3) was allocated for 
defining the triplet order (choice 1, choice 2 and choice 3 – see the next section for an explanation of the 
triplet concept). For each country, if the number of triplets per land use was insufficient, the polygons 
having more than 6 points (for the specific land use) allowed the selection of other triplets. This process 
continued until the maximum possible number or the expected number of points per land use was achieved. 
If the number of triplets per land use was higher than what was expected, the triplets with the highest 
number of pixels (the most representative) were ranked and selected. In any case, when one land use was 
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underestimated another land use (if possible arable land, grassland and permanent crops since they are 
the most difficult to sample) was overestimated. 

This approach allowed the selection of sampling locations proportional to the surface areas of each country 
and the main land use types within each country. 

Due to lower spatial accuracy of the CORINE land cover compared to the actual LUCAS point data, there can 
be some difference in the planned vs. surveyed land covers/ land uses at the individual survey points.  

Distribution of the sampled sites across major land use classes by countries are given in Table 2.1. 

 

389285Table 2.1 LUCAS 2009 Topsoil samples by countries and main land uses* 

�

Country 

Total 

number of 

samples 

Cropland 

annual 

crops 

Cropland 

permanent 

crops 

Woodland Shrubland Grassland 

Austria 420 145 3 121 6 134 
Belgium 71 35 1 15 - 18 
Cyprus 90 25 9 14 14 25 
Czech Republic 431 227 6 88 2 95 
Denmark 232 166 1 25 2 34 
Estonia 220 54 - 103 5 54 
Finland 1716 314 1 1261 22 94 
France 2952 1525 88 380 53 830 
Germany 1947 928 27 410 3 549 
Greece 491 150 100 64 60 88 
Hungary 497 314 6 60 4 104 
Ireland 233 11 - 19 9 174 
Italy 1333 549 268 127 39 285 
Latvia 349 78 - 126 8 132 
Lithuania 356 137 1 69 2 141 
Luxembourg 3 1 - 2 - - 
Malta  19 1 1 - - 9 
Netherlands 211 88 - 22 - 88 
Poland 1648 829 21 304 11 446 
Portugal 476 45 71 193 52 99 
Slovakia 268 111 2 83 7 64 
Slovenia 112 8 1 68 3 32 
Spain 2696 1321 419 215 105 350 
Sweden 2256 185 - 1802 47 146 
UK 942 354 - 72 21 458 
Total 19967 7601 1026 5643 475 4449

 
*The numbers given in this table correspond to samples which can be uniquely associated to a geographical reference.  
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Samples were collected in proportion to the area and in the participating countries (Table 2.1). From the 
total of 19,967 samples, more than 96% of the samples originated from the five main land cover types 
(Table 2.1). Remaining soil samples are from other land uses.  

In addition to the 2009 survey, the same methodology was extended in 2012 to Bulgaria and Romania, 
where 664 and 1427 topsoil samples, respectively, were collected. This report does not contain the results 
of the analyses on these soil samples, which are still to be completed. 

 

2.4 Spatial representativity of the data  

The purpose of the LUCAS soil survey was to establish baseline values of topsoil properties on the selected 

sampling points as a reference to enable future comparisons. LUCAS soil points are representative for the 
land use and topography within each country, to different degree, depending on the heterogeneity of land 
use and topography of the country. LUCAS survey does not cover areas above 1,000 m in elevation. 

The selection of the soil sampling sites has an inherent bias towards agricultural land (predominantly under 
arable cultivation), followed by grasslands and woodlands. This means that results based exclusively on 
LUCAS soil samples may over represent properties from the more heavily sampled conditions whiles under-
representing others (Fig. 2..2). Specific examples include rough grazing and wetlands. This bias may limit 
the spatial extrapolation of the data to heavily sampled land cover classes. More research is needed in this 
area, especially in relation to the production of more detailed maps (e.g. 1 km cells or finer). 

The survey was designed to allocate sampling points with similar densities in each country, rather than to 
allocate sampling points according to soil heterogeneity in different regions in the EU. The first approach is 
often used for monitoring schemes, while the second approach is the basis of systematic soil survey for 
mapping purposes. As one country might have very different soil heterogeneity from another (for details 
see Ibáñez et al., 2013), soil samples of the LUCAS survey differ to a great extent, regarding the area 
representation is concerned. 

The applicability of the LUCAS soil survey for soil mapping – as it was not designed for this purpose - is 
therefore possibly problematic. Another limitation of the LUCAS soil data for soil mapping arise from the 
fact that it only includes information on the topsoil. Soil maps are based on surveys that sample full soil 
profiles and make spatial relationships between soil properties in a three dimensional space, usually 
represented on two dimensional map sheets.  

Spatial representativity of soil samples of full profiles in a survey designed for soil mapping depends on 
the pedological heterogeneity of the area. Table 2.2 provides an overview in this respect. When assessing 
LUCAS soil data against the criteria of international soil survey guidelines, we can assume that it might be 
regarded as an exploratory survey. As information on subsoil properties are not available, this hypothesis 
needs to be carefully taken, since soil survey needs to take subsoil information into account as well. 

On the other hand, digital soil mapping techniques which include auxiliary variables (land cover, climate 
etc.) might improve spatial accuracy of soil mapping, compared to traditional methods. However, there 
needs to be further research into the strength of the relationships between soil characteristics and common 
covariates such as land cover and elevation (i.e. a similar land cover types may occur on different soil types 
while conversely, different land cover units may occur on a single soil type, especially if one involves 
farming practices). Assessing the representativity of the LUCAS soil sampling sites against pan-European 
soil variability has yet to be carried out and may require significant effort. 

It is worth reflecting that the full LUCAS land use/land cover survey utilises 250,000 samples to validate 
changes in the vegetative properties of the European land surface – a characteristic that can easily be 
visualised by satellite or airborne sensors. One could argue that the 10% sample used in the topsoil survey 
are nowhere near sufficient in number to spatially categorise in detail the complexity of soil patterns 
across the EU. An interesting analogy can be drawn from the current exercise to complete the soil mapping 
of ‘terra incognita’ in the Republic of Ireland where a comparable number of samples have been collected 
to categorise the soils of around 50% of the country (approximately 2% of the EU). 
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In summary – LUCAS data are representative on regional (NUTS 2) to country level for areas below 1,000 
m elevation across the EU. They are, however, not representative of local conditions and certainly not of 
specific field conditions.  
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3. The LUCAS Topsoil Database version 1.0 

Gergely Tóth  
 

3.1  Database properties 
 
Version 1.0 of the LUCAS Topsoil database includes analytical data from topsoil samples with unique geo-
reference for each sample taken during the 2009 LUCAS exercise, covering 23 EU Member States (Eurostat 
2013) and the complementing surveys in Cyprus and Malta.  
 
The complete dataset includes data from 19,969 samples from 25 Member States (see table 2.1 in chapter 
2). The LUCAS Topsoil data are stored in three formats: (1) MS Excel worksheet (2) Text file and (3) MS 
Access relational database. 
 
The Excel worksheet is configured as 17 fields (columns): 4 fields with identifiers and 13 fields with soil 
attribute information (Table 3.1).  
 
The text file stores the results of the measurement of the multispectral reflectance of soil samples (Table 
3.2).  
 
The Excel worksheet and the text file are distributed to the general public through the European Soil Data 
Centre. Access is provided through the URL: 
 

http://eusoils.jrc.ec.europa.eu/projects/lucas/data.html 
 
 
Data from the LUCAS Topsoil Survey can also be viewed using the ESDAC Web-Tool, accessible from the 
above site. For details of the ESDAC Web-Tool see chapter 10 of this report. 
 
Soil attribute data of individual LUCAS Topsoil samples can be linked to databases of the general LUCAS 
land use and land cover survey through POINT_ID.  
 
Please note that in some cases the predefined LUCAS point location could not be physically accessed. In 
these cases the land use / land cover assessment was performed from a point in its vicinity, but pertaining 
to the planned LUCAS location. The soil sampling was done at that point.  
 
The location of soil sampling is registered by Global Positioning system (GPS) coordinates. (GPS_LAT and 
GPS_LONG). There may be an imprecision in the GPS coordinates, therefore GPS_LAT and GPS_LONG are 
given for orientation purposes only.  
 
For Cyprus and Malta, there are no ‘official’ LUCAS points but only points were soil sampling was 
performed.  

 
For some soil sampling locations (ca. 70), the GPS coordinates are not available. In these cases, the 
coordinates of the general LUCAS survey points can be used to orientate about the soil sampling location. 
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Table 3.1 Fields in the LUCAS Topsoil v1.0 database 

Field 
Units/Values 

Code Relevance Description3 

POINT_ID LUCAS point Unique identifier of the LUCAS survey point 8 digit number 

coarse soil sample coarse fragments in %  

clay soil sample clay content in %  

silt soil sample silt content in % 

sand soil sample sand content in % 

pH_in_H2O soil sample pH measured from water solution -

pH_in_CaCl soil sample pH measured from CaCl solution -

OC soil sample organic carbon content g/kg 

CaCO3 soil sample CaCO3 content g/kg 

N soil sample Nitrogen content g/kg 

P soil sample Phosphorus content mg/kg 

K soil sample Potassium content mg/kg 

CEC soil sample Cation Exchange Capacity cmol(+)/kg 

Notes soil sample additional observations free text 

sample_ID soil sample Unique identifier of the soil sample 3 to 7 digit number

GPS_LAT soil sampling 
location 

Latitudinal GPS coordinate of the soil 
sampling location (WGS84)  
 

decimal degrees 
NA = No signal / No GPS 
information available 

GPS_LONG soil sampling 
location 

Longitudinal GPS coordinate of the soil 
sampling location (WGS84) 

decimal degrees  
NA = No signal / No GPS 
information available 

 
 
 

Table 3.2 Information stored in textile (multispectral properties) of the LUCAS Topsoil data v1.0 

Code Description 
##SAMPLE NAME 
 

Sample ID (duplicates)

##SPECTRUM Wavelengths of the measurement (400-2499.5 nm) and 
measured reflectance (nnn,nn; n,nnnnnn) 

 
 
Data on land cover/ land use at the LUCAS points can be accessed from the website of Eurostat:  
 

http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/data 
 
This website provides detailed information on the methodologies and classifications of the LUCAS 2009 
survey. 
 
 
A relational database structure was also developed to store data to facilitate data management including a 
possible future update, and maintain information on data quality and extension with new attribute 
information (Figure 4.1). 
 
  

                                                            

3 For reference methods see chapter 3.2 
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The database includes four tables:  

1. LULCdata table stores information on land use/cover from each LUCAS point; 
 
2. PosCoord table stores information on the geographic position of the LUCAS points including country, 

climatic region and geographic coordinates; 
 
3. SoilData table stores results of laboratory measurements of key soil attributes. On completion, 

data from the analysis of heavy metals levels will be included in this table; 
 
4. QAinfo table stores information on the results of consistency/quality assessment of the data. 

 

Figure 3.1 Structure and content of the LUCAS Topsoil Database V1.0 

 
The Access database is stored in the European Soil data Centre (ESDAC) at the Joint Research Centre and 
used for database management purposes.  

 
 

3.2  Methods of laboratory analysis of samples 
 
 
Table 3.2 shows the list of measured parameters, together with the methodologies used and precision of 
measurement records. 
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Analysis of the soil parameters followed standard procedures (see literature for the applied ISO methods). 
The same methods were used in the Biosoil Survey4. Coarse fragments were measured in the first phase of 
the analysis. Diffuse high resolution reflectance spectra were collected for all samples using a spectroscope 
measuring a continuous reflectance spectrum from 400 to 2500 nm with 0.5 nm spectral resolution. These 
measurements followed the protocol of the Soil Spectroscopy Group (SPS 2011) and the procedures 
prescribed by the FOSS spectroscope (FOSS 2009).  
 
Laboratory analysis of the samples was performed between December 2009 and June 2011. 
 
Analysis of soil samples are currently extended to measure additional elements, including Ag, Al, As, Ba, Cd, 
Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Ti, V and Zn.  

 
Results are foreseen for 2014.  

 
 

Table 3.2. Soil parameters of LUCAS-soil samples analysed in 2009-2011 

Parameter Unit 
Decimal

s 
Method/ 
Standard 

Coarse fragments % 0 ISO 11464. 2006 

Particle size distribution - - ISO 11277. 1998 

   Clay content % 0  

   Silt Content % 0  

   Sand Content % 0  

pH(CaCl2) - 2 ISO 10390. 1994 

pH(H2O) - 2 ISO 10390. 1994 

Organic carbon g/kg 1 ISO 10694. 1995 

Carbonate content g/kg 0 ISO 10693. 1994 

Phosphorus content mg/kg 1 ISO 11263. 1994 

Total nitrogen content g/kg 0 ISO 11261. 1995 

Extractable potassium content mg/kg 1 USDA, 2004 

MULTISPECTRAL Properties 
(With diffuse reflectance measurements 
saturation) 

  FOSS Manual 2009 

Cation exchange capacity cmol(+)/kg 1 ISO 11260. 1994 

 
 
 

                                                            

4 http://eusoils.jrc.ec.europa.eu/esdb_archive/eusoils_docs/other/EUR24729.pdf 
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 3.3 Quality assurance in data preparation�

 

A series of quality control procedure were applied throughout the survey, laboratory analysis and database 
development. A uniform sampling design, standardised methodology and nomenclature have been applied 
to secure the internal coherence of the data (Eurostat 2009). Surveyors were requested to follow precisely 
described quality assurance procedures during field activities and sampling (Eurostat 2009). An internal 
supervisor performed a second quality check, backed by internal quality control (QC) modules of the Data 
Management Tool (Eurostat 2009). In the framework of Eurostat Quality Assurance Framework, the LUCAS 
survey also underwent an external peer review process.  

 
The quality control of the soil analysis was secured by the quality assurance (QA) accredited central 
laboratory in several steps, including control of registration of samples, application of local reference 
material, repeated analyses of randomly selected samples and a participation in the International Soil-
Analytical Exchange Program (Szováti et al. 2011). 

  
Raw soil data stored in the database (Figure 3.1) was assessed against pedological criteria set by soil 

experts of the Joint Research Centre (see chapter 4). These included simple coherence measures (e.g. the 
sum of sand+silt+clay fractions should equal 100%), flagging data with extreme values (e.g. pH) and with 
controversial characteristics (e.g. extreme low pH and high CaCO3). An unreliability signal is associated to 
each outlying sample in the QAinfo table of the relational database. 
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4. Quality�control�of�data�against�pedological�criteria�

Rannveig Guicharnaud 

 

4.1 Pedological hypothesis tested  

A pedological data quality control was conducted on the LUCAS soil dataset as to assess expected trends in 
soils systems in terms of the soils pedology. These included;  

(1) Correlations between soil organic carbon (OC) and nitrogen (N) as soil organic matter is 
composed of both, carbon (C) and N in a relatively fixed ratio of 12:1 in mineral soils to around 
30:1 in organic soils. Soil samples exhibiting ratio in excess of 40:1 need further consideration. 

(2) Correlation between the soil cation exchange capacity (CEC) and clay with soil OC, as both are 
important players in the soil CEC. The soil organic fraction is believed to account for 50-90 % for 
the soil CEC due to the large amount of negatively charged surface sites available to bind cations. 
Furthermore, clays are also an important contributor for cation exchange capacity due to 
isomorphic substitution where Si+4 and Al+3 in clay crystal lattices are replaced with cations of lower 
positive charge or by deprotonation of hydroxyl groups on clay surfaces leading to excess negative 
charge available to bind cations from soil solution. 

Additionally assumptions where made towards the fact that; 

(1) Greater OC concentrations should be expected in forest/grassland soils compared to cropped 
soils, as ploughing, which often is associated with cropped systems, increases soil organic matter 
decomposition;  

(2) Greater phosphorous (P) and potassium (K) where present in cropped soils compared to other 
forest soils due to fertilizer application of cultivated soils;  

(3) Higher pH was expected in cropped soils compared to organic soils (such as forest soils, wetland 
soils, ≥20% OC), due to liming which is often associated with cultivation increasing the soil pH. 
Moreover cultivated soils often have higher pH due to lower soil OC content and therefore lower 
supply of organic acids; 

(4) Calcium carbonate (CaCO3) was not expected at sites with low pH as its solubility is pH 
dependent and it does not form under acidic conditions; 

(5) Principal component analyses (PCA) was conducted on the LUCAS topsoil dataset to assess 
which measured soil parameters (pH, CaCO3, CEC, clay, C%, N%, K, P, sand, silt, coarse) 
differentiated soils from different land cover groups.  

 



4

F
L
o
d
m
r

 

4.2 Results 

Figure 4.1 g
LUCAS-Topso
obvious outl
dataset is m
more detaile
relationships

Figure 4.1 Ov
N% vs OC%
CaCl2, P mg

gives an ove
oil Survey. I
liers may ea

more conven
ed study ma
s.  

verview of se
%, CaCO3 vs p
g kg-1 vs clay 

LUCAS�TOP

erview of se
In addition 
asily be det
iently sorted
ay be condu

lected relatio
H CaCl2, K mg
%) in all sam

scrub

 

PSOIL�SURVE

elected relat
to displayin

tected from 
d according 
cted to iden

nships of soil
g kg-1 vs clay 
ples collected

bland, grasslan

EY���Methodo

16 

tionships of 
ng the range

this figure.
to land use

ntify outliers

l properties (C
% , CEC meq 

d in the LUCAS
nd, bare land,

ology,�data�a

soil propert
e of soil pa

Due to the
 classificatio
s and samp

C:N vs OC%, P
kg-1 vs OC%, 

S project in al
, peat and ma

nd�results�

ties in all sa
arameters in
e large num
on and/or co
les not disp

 mg kg-1 vs p
CEC meq kg-1

ll land cover g
arsh). 

amples colle
n the survey

mber of data
ountries of o
playing logica

H CaCl2, C:N v
1 vs clay %, O
groups (cropla

ected in the
y, the most
a points the
origin and a
al pedologic

 

vs P mg kg-1, 
OC % vs pH 
and, forest, 

�

e 
t 
e 
a 
c 



As expected
groups (cro

Figure 4.2 d
agreement 
present in a

 

 

 

 

  
  
  
  
  

  
  
  
  
N

%
 

  
  
  

  
  
  
  
  

 N
%

 

 Black =

 

d, strong po
p, forest, gra

displays corr
with the as

a relatively f

Figur

= Cropland, Re

LUCAS�TO

sitive correla
assland).  

relations bet
ssumptions 
fixed ratio of

re 4.2 Relatio

ed = Forest, G

 

OPSOIL�SURV

ations where

tween C % a
made, that 

f around 12:

 

 

 

nship betwee

Green = Scrub

VEY���Method

17 

e found bet

nd N % in d
soil organic

1 and above

en N% and C%

land, Purple =

 

 

dology,�data�

ween N % a

ifferent land
c matter is 

e. 

% in different 

= Grassland, B

and�results

and OC % in

d cover syste
composed 

 

 

 

land cover sy

Blue= Bare lan

n all soils an

ems (Fig. 4.2
of both C a

 

ystems.  

nd, Orange = W

nd land cove

2). This was i
and N and 

Wetlands. 

�

er 

in 
is 

 

 



 

C
N

C
N

 

The C:N r
other wo

 

  
  
  
  
 C

:N
 

  
  

  
  
  
  
  

  
 C

:N
 

Black = C

 

ratios of soil
ords the soils

Figure 4

Cropland, Red

LUCAS�TOP

ls were gene
s became inc

4.3 Relationsh

 = Forest, Gre

 

PSOIL�SURVE

erally betwee
creasingly N 

 

 

hip between C

een = Scrubla

EY���Methodo

18 

en 10:1 and 
depleted (Fi

:N ratio and C

nd, Purple = G

 

ology,�data�a

20:1 and we
ig. 4.3). 

C% in differen

Grassland, Blu

nd�results�

ere increase

 

 

nt land cover c

ue = Bare land

d with eleva

classes.   

d, Orange = W

ated C%, in 

Wetlands 

�

 

 



Genera
croplan
contribu

 

  
  
  
  
  

  
 C

E
C
 (

m
e
q
 k

g
-1

) 
  
  
  

  
  
  
  
C

E
C

 (
m

e
q
 k

g
-1

) 

Clay vs CEC 

 

Figure 

Black

 

 

 

 

lly, there wa
d, forest an
utor for soil 

4.4 Relations

k = Cropland, 

 

LUCAS�TO

as a strong 
nd grassland
CEC due to t

ships between

Red = Forest, 

 

OPSOIL�SURV

positive rela
d systems (F
their reactive

 

 

n soil cation ex

Green = Scru

 

 

 

VEY���Method

19 

ationship be
Fig. 4.4), sup
e surfaces. 

xchange capa
systems

ubland, Purple

dology,�data�

etween the s
pporting the

acity CEC and 
s. 

e = Grassland,

and�results

soil CEC and
e theory that

 

 

soil clay cont

, Blue = Bare 

 

d the soil cla
t clays are 

tent in differe

land, Orange 

 

ay content i
an importan

ent land cover

= Wetlands 

�

in 
nt 

 

 

r 



C
E
C

(C
l)

C
E
C

(C
l)

 

There wa
is in agre

 

  
  
  
  

  
  
  
C
E
C

 (
C
m

o
l)
 

  
  

  
  
  
  
  

C
E
C

 (
C
m

o
l)
 

Figure 4

 Black 

 

Moreove
soils (Fig

Figu

Grey do

as likewise g
eement with

4.5 Relationsh

= Cropland, R

r, the soil CE
gure 4.6).  

ure 4.6 Soil CE

ots represent 

LUCAS�TOP

generally a p
 OC organic 

hips between 

Red = Forest, G

EC was the g

 

EC dependenc

cropland, red

PSOIL�SURVE

positive corre
matter bein

 

 

soil cation ex

Green = Scrub

greatest whe

ce on organic 

 dots represe
dots 

EY���Methodo

20 

elation betw
g negatively

xchange capac
systems. 

bland, Purple 

en both high 

C % and clay

nt forests and
is proportiona

ology,�data�a

ween the soil
y charged inc

city CEC and s
 

= Grassland, 

clay concen

 

y % in a select

d purple dots 
al to CEC. 

nd�results�

l CEC and th
creasing the 

 

 

soil OC conten

Blue = Barela

tration and 

ted member s

represent gra

he soil OC (F
soil CEC. 

nt in different

and, Orange =

C % where m

state country 

asslands. The 

ig. 4.5). This

t land cover 

 Wetlands. 

measured in 

 

(Spain).   

size of the 

�

s 

 

 



Althoug

% level

to their 

Figu

 

Croplan

likewise

retained

where a

High sta
have no

 

Figure 4

gh variability

ls than cropp

dense root 

re 4.7 Soil OC
re

nd soils disp

e exhibited 

d in minera

attributed to

andard devia
ot been remo

4.8 Soil pH. Bla

LUCAS�TO

y was high in

ped soils (Fi

system. In fo

C %. Black col
epresent gras

played the h

lower P lev

al-organic co

o lack of fert

ations of me
oved yet (Fig

ack columns r
grassland

OPSOIL�SURV

n all land use

gure 4.7).  H

orest soils, h

lumns represe
sland. Error b

highest pH 

vels (Figure 

omplexes. It 

tilization and

eans for P an
gures 4.9 an

represent crop
d. Error bars re

VEY���Method

21 

e classes, gr

High OC leve

high OC are r

ent cropland, 
ars represent

values of a

4.9). This i

was assum

d cation leach

nd K in grass
d 4.10).  

pland, red col
epresent one 

dology,�data�

rassland and

els are a cha

related to hu

red columns r
t one standard

all land cov

s commonly

med that low

hing which is

sland soils a

lumns represe
standard dev

and�results

d forest soils

aracteristic o

umus rich to

represent fore
d deviation of

er groups (

y observed 

wer K conce

s prominent 

are due to ou

ent forests an
viation of mea

s, demonstra

of grassland

psoil layers. 

ests and purp
f means. 

Figure 4.8). 

in forest so

entrations in

at the low p

utliers in the

nd purple colu
ans. 

ated greater 

ds mainly du

 

 

ple columns 

Forest soil

oils due to 

n forest soi

pH (Fig. 4.10

e dataset tha

 

mns represen

�

C 

ue 

s, 

P 

ls 

0). 

at 

nt 



 

Figure 4

Figure 4

4.9 Soil P mg 

.10 Soil K mg

LUCAS�TOP

kg-1.Black col

Error 

g kg-1. Black co

Error 

 

PSOIL�SURVE

lumns represe
re

bars represen

olumns repres
re

bars represen

EY���Methodo

22 

ent cropland, 
epresent grass

nt one standa

 

 

 

 

 

sent cropland
epresent grass

nt one standa

ology,�data�a

red columns 
sland.  

ard deviation o

, red columns
sland.  

ard deviation o

nd�results�

represent fore

of means. 

s represent fo

of means. 

ests and purp

rests and pur

 

ple columns 

 

rple columns 

�



In the LUCA
above (Figu

 

  
  
  
  

  
  
 C

a
C
O

3
 (

m
g
 k

g
-1

) 
  
  
  
  

  
  
 C

a
C
O

3
 (

m
g
 k

g
-1

) 

 

F

Bl

 

 

AS dataset, c
ure 5.11) wh

Figure 4.11 Re

ack = Cropland

LUCAS�TO

calcium carb
ich was expe

elationships b

d, Red = Forest,

 

OPSOIL�SURV

bonate (CaCO
ected as CaC

 

 

between soil C

 Green = Scrub

VEY���Method

23 

O3) notable c
CO3 is highly 

CaCO3 and soi

bland, Purple =

dology,�data�

concentratio
soluble und

l pH (CaCl2) in

Grassland, Blue

and�results

ons were only
er acidic con

 

 

n different lan

e = Bare land, O

y observed a
nditions.  

nd cover class

Orange = Wetla

at pH 6.5 an

ses.  

ands 

�

nd 

 

 



P
f

 

 

 

Principal com
from other s

Figure 
select

 

Conclus

From a 
between 
than diff

 

 

mponent ana
oils within th

4.12 Principa
ed member s

LU

ions 

pedological 
the land co

ferent geoch

LUCAS�TOP

alyses revea
he LUCAS so

al component 
tate country (
CAS soil data

point of vie
over groups 
emical relat

 

PSOIL�SURVE

led that the 
oil dataset (F

analyses plot
(Hungary). Th
set (sand, silt

ew, the LUCA
were obser

tionships.  

EY���Methodo

24 

soil texture
Figure 4.12).

t showing gro
e vectors incl
t, clay %, OC%

AS topsoil d
rved as cont

ology,�data�a

 was a stron
 

uping of soil f
uded are all m

%, P mg kg-1, K

data displaye
trasting abu

nd�results�

ng factor dif

from differen
measured soil
K mg kg-1, pH 

ed expected
undance of t

fferentiating

nt land cover g
l parameters 
CaCl2). 

d behaviour. 
the measure

g forest soils

 

groups in a 
within the 

Differences
ed variables

�

s 

s 
s 



5. Spati

Tamás Herm

 

LUCAS soil 
sampling lo
Please note
in reality. T
values.  

Another iss
agricultural
representat
sampled co

Figures 5.1-

al repres

mann 

samples we
ocation are 
e that points
This is due t

sue worth k
l land (predo
tion of LUC
onditions whi

-5.9 display 

Figure 5.1 S

LUCAS�TO

sentation

ere classified
displayed to
 on the map

to the large 

keeping in m
ominantly an
AS soil pro
iles under-re

soil property

Spatial repres

OPSOIL�SURV

n of soil 

d using comm
o visualise r
ps appear to
differences 

mind is the 
nnual croplan
perty classe

epresenting o

y classes of 

sentation of to

VEY���Method

25 

propertie

mon pedolog
results of th
 cover, or be
in the map

bias in the
nd), followed
es may ove
others. 

the LUCAS s

opsoil total ni

 

 

dology,�data�

es of LUC

gical/agroche
he survey. O
e representa
p scale and t

e selection 
d by grassla
er represent

soil sampling

trogen conten

and�results

CAS soil s

emical class
Overview ma
ative for, larg
the spatial v

of the soil 
ands and wo
t properties 

g locations. 

nt class of LU

samples 

ses. Class va
aps are pres
ger areas tha
visualization

sampling s
odlands. Thi
from the m

UCAS samples

alues for eac
sented below
an they cove

n of the poin

sites toward
s means tha
more heavil

 

. 

�

ch 
w. 
er 
nt 

ds 
at 
ly 



Figure 5.2 S

LUCAS�TOP

Spatial represe

PSOIL�SURVE

entation of to

EY���Methodo

26 

 

 

 

 

opsoil phospho

 

 

 

 

 

ology,�data�a

orus content c

nd�results�

class of LUCAAS samples. 

�

 



Figure 5.3

LUCAS�TO

3 Spatial repre

OPSOIL�SURV

esentation of 

VEY���Method

27 

 

 

 

 

topsoil potas

 

 

 

 

 

dology,�data�

sium content 

and�results

class of LUCAAS samples. 

�

  



Figur

LUCAS�TOP

e 5.4 Spatial 
Texture cl

PSOIL�SURVE

representatio
lassification is

EY���Methodo

28 

 

 

 

 

on of topsoil t
s based on th

 

 

 

 

 

ology,�data�a

exture class o
e FAO (1995)

nd�results�

of LUCAS sam
) scheme. 

mples 

�

 



Figu

LUCAS�TO

ure 5.5 Spatia

OPSOIL�SURV

l representati

VEY���Method

29 

 

 

 

 

ons of topsoi

 

 

 

 

 

dology,�data�

l pH(H2O) class 

and�results

of LUCAS sammples. 

�

 



Figure 5.6

LUCAS�TOP

6 Spatial repre

PSOIL�SURVE

esentations o

EY���Methodo

30 

 

 

 

 

f topsoil CaCO

 

ology,�data�a

O3 content cla

nd�results�

ass of LUCAS samples. 

 

�

 



F

 

Figure 5.7 Spa

LUCAS�TO

atial represen

 

OPSOIL�SURV

ntations of top

VEY���Method

31 

 

 

 

 

psoil cation ex

dology,�data�

xchange capa

and�results

acity class of LLUCAS sampl

 

es. 

�



Figu

LUCAS�TOP

ure 5.8 Spatia

PSOIL�SURVE

al representati

EY���Methodo

32 

 

 

 

 

ions of topsoi

 

 

 

 

 

 

ology,�data�a

il category of 

nd�results�

LUCAS sampples. 

 

�



Figure 5.9

LUCAS�TO

9 Spatial repre

OPSOIL�SURV

esentations o

VEY���Method

33 

 

 

 

 

f topsoil orga

dology,�data�

anic carbon co

and�results

ontent of LUCAAS samples. 

 

�

 



LUCAS�TOPSOIL�SURVEY���Methodology,�data�and�results�

34 

�

 

 

 

  



6. Land-

Gergely Tót

The LUCAS 
use types 
assessment
 
In the first 
where the c
areas (Hart
where the c
to Sub-cont
semi-arid (
climatic cha

 

-use spec

th, Arwyn Jon

topsoil data
and mana

t of all facto

step of the
complex effe
twich et al., 2
concepts of B
tinental (CZ4
CZ7), Medite
aracteristics 

Sub regions

LUCAS�TO

cific com

nes and Luca

abase provid
agement pra
ors and their 

e evaluation
ects of wate
2005) were 
Boreal and B
4), Subconti
erranean Te
prevail. Clim

s indicated de

 

OPSOIL�SURV

mparative

a Montanare

des a range 
actices, cou
interactions

 process, ni
er availability

arranged in
Boreal to Tem
nental, part
mperate an

mate zones a

Figure 6.1 

note slight va

VEY���Method

35 

e analysis

ella 

of opportun
untries and 
s is beyond t

ne characte
y and therm
to nine clim
mperate (CZ
ly arid (CZ5
d Sub-ocean

are shown in 

Climate zone

ariations withi

dology,�data�

s of soil 

nities to com
climatic f

the capacity 

eristic Europe
al regime ar
atic groups. 
1), Atlantic (
), Temperat
nic (CZ8) an
figure 6.1. 

es of Europe. 

in the main cl

and�results

characte

mpare soil ch
actors. How
of this intro

ean climate 
re distinct fo
The climatic
CZ2), Sub-oc
e Mountaino

nd Mediterra

limate zone (e

eristics in

haracteristics
wever, a co
duction.  

systems we
or soil. Thirty
c groups em
ceanic (CZ3)
ous (CZ6), M
anean Mount

e.g. elevation)

n the EU

s across lan
omprehensiv

ere identifie
y-five climat
mbody region

, Sub-ocean
Mediterranea
tainous (CZ9

 

). 

�

nd 
ve 

ed 
ic 

ns 
ic 

an 
9) 



LUCAS�TOPSOIL�SURVEY���Methodology,�data�and�results�

36 

�

  



LUCAS�TOPSOIL�SURVEY���Methodology,�data�and�results�

37 

�

6.1 Croplands 
 
The LUCAS dataset was sub-sampled to extract only the mineral soils of croplands. In the context of the 
LUCAS programme, croplands are defined as: 
 

� land where crops are planted and cultivated.  
 
Sub-categories of croplands in the LUCAS survey include: 
 

a. Cereals (B11 Common wheat, B12 Durum wheat, B13 Barley, B14 Rye, B15 Oats, B16 

Maize, B17 Rice, B18 Triticale, B19 Other cereals) 
 

b. Root crops (B21 Potatoes, B22 Sugar beet, B23 Other root crops) 

 

c. Non-permanent industrial crops (B31 Sunflower, B32 Rape and turnip rape, B33 Soya, 

B34 Cotton, B35 Other fibre and oleaginous crops, B36 Tobacco) 
 

d. Dry pulses, vegetables and flowers (B41 Dry pulses, B42 Tomatoes, B43 Other fresh 

vegetables, B45 Strawberries) 
 

e. Fodder crops (B51 Clovers, B52 Lucerne, B53 Other Leguminous and mixtures for fodder, 

B54 Mix of cereals, B55 Temporary grassland) 
 

f. Permanent crops (B71 Apple fruit, B72 Pear fruit, B73 Cherry fruit, B74 Nuts trees, B75 

Other fruit trees and berries, B76 Oranges, B77 Other citrus fruit) and other permanent 

crops (B81 Olive groves, B82 Vineyards, B83 Nurseries, B84 Permanent industrial crops) 

 
 

As the population from permanent croplands was not sufficient to draw adequate assumptions in all cases, 
analysis presented in this section has focused only on soil properties under annual crops (bullet points a-e 
in the above list).  
 
A series of descriptive statistics and multiple comparison tests were performed to assess the topsoil data 
from croplands in different climatic regions of the EU. One-way ANOVAs tests were performed to assess if 
there were significant differences between climate zones concerning their soil characteristics (on a 0.05 
level). 
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6.1.1 Regional variability of topsoil texture of croplands  

Particle size distribution data measured for the soil samples were classified into five texture categories 
according to the FAO scheme (1990). In order to be compliant with the requirements of the texture 
classification, particle size data measured using the ISO 11277 method (ISO 1998) were transformed to 
uniform texture classes according to Hollis et al. (2006). The particle size distributions of all mineral soil 

samples in the LUCAS database according to the different climatic zones are shown in figure 6.2, while 
those collected from soils under annual crops are shown in figure 6.3. Distribution of soils in different 
texture classes are indicated using the same texture triangles that display particle size distribution of the 
samples (Figures 6.2 and 6.3). These figures show that there are considerable differences in topsoil 
textures between the climate zones. Coarse and medium textured soils dominate Boreal and Boreal to 
Temperate (CZ1) and Sub oceanic to Sub-continental (CZ4) areas, course texture having the largest share 
among all climate zones in the latter. The dominance of medium textured soils is characteristic for all other 
climatic zones, but this domination is most pronounced in the Temperate Mountainous (CZ6) and 
Mediterranean Semi-Arid (CZ7) climate zones. Fine texture soils have the highest share in the 
Mediterranean Mountainous region (CZ9) with 30% of all samples from this region, and the lowest share in 
the Boreal and boreal to temperate zone (CZ1) with 6.1%. Less than 1% of the soils in this region have very 
fine texture. The very fine textured soils are also relatively rare in other European regions, exceeding 1% of 
all samples only in the Sub-continental, Partly Arid (CZ5) and in the Mediterranean Mountainous (CZ9) 
regions. Interestingly, annual crops are cultivated on very fine textured soils to a higher proportion than the 
share of these soils in all land use classes in six climatic zones (CZ1, 4, 5, 6, 8 and 9).  

Their share is less only on areas with abundant water (CZ2 and 3) and areas with aridity (CZ7) where heavy 
texture might be disadvantage. Croplands, on the other hand are always more abundant on fine texture soil 
in all regions except one (Temperate Mountainous CZ6), while medium fine texture can be found in higher 
fraction under croplands than in other uses in all regions without exception. Coarse textured soils in all 
climate zones have a lower proportion in annual croplands than in all land uses and the proportion of 
medium textured soils in this regard is only higher in the Boreal and Boreal to Temperate (CZ1) and the 
Sub-oceanic to Sub-continental (CZ4) climatic zones. 

The above finding illustrate both the climatic dependency of texture formation in the European Union and 
highlight the soil texture aspect in land use optimisation strategies applied by the farmers under different 
climates.  
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6.1.2 Regional variability of topsoil organic carbon of croplands 

Data from the LUCAS soil survey confirms the common perception (Jones et al., 2005) that soil organic 
carbon (SOC) levels increase following a south-east to north-west trend in the EU. Differences in SOC 
concentrations attributed to climatic factors can exceed 200% between mineral soils under croplands in the 
boreal/boreal-to-temperate region and those in the Mediterranean semi-arid climate, (Table 6.1). However, 
standard deviation values highlight the high variability of SOC concentrations within climatic zones. In every 
zone SOC levels reach, or even exceed, the magnitude that was measured between mean levels of the 
different climatic zones. This phenomenon shows that the combined effect of other soil forming factors 
and soil properties is on the same order of magnitude with the effect of climate when studying SOC on a 
continental scale.  
 

Table 6.1. Soil organic carbon concentration (g/kg) in topsoils of annual croplands (AC) and permanent croplands (PC) 
in different climatic regions of Europe 

Climate zone Land use 
type 

Mineral soils 

No. Name mean std n 

1 Boreal and boreal to temperate AC 27 18 703 

  PC 16 5 3 

2 Atlantic AC 20 12 1993 

  PC 22 14 36 

3 Sub-oceanic AC 19 10 784 

  PC 25 13 32 

4 Sub-oceanic to sub-continental AC 15 9 1392 

  PC 16 10 25 

5 Subcontinental, partly arid AC 18 7 506 

  PC 17 7 13 

6 Temperate mountainous AC 17 8 89 

  PC 26 13 22 

7 Mediterranean semi-arid AC 12 7 1433 

  PC 13 8 463 

8 Mediterranean temperate and sub-oceanic AC 16 11 559 

  PC 17 12 380 

9 Mediterranean mountainous AC 15 6 77 

  PC 18 10 49 

 
Multiple comparison tests showed that SOC levels in annual croplands of the boreal and boreal to 
temperate zone (CZ1) are significantly higher than SOC levels in annual croplands of any other climatic 
zones. Mean SOC level in the Atlantic zone (CZ2) is significantly higher than in zones to its east and south, 
except for the Sub-oceanic zone (CZ3) with which the observed difference was not significant. Mean SOC 
content in croplands with annual crops in the Sub-oceanic to sub-continental zone (CZ5) significantly differs 
from those in all zones, except in Temperate mountainous (CZ6), Mediterranean temperate and sub-oceanic 
(CZ8) and Mediterranean mountainous (CZ9). SOC content in the Mediterranean semi-arid zone (CZ7) is 
significantly lower than SOC in any other regions, except for the mountainous regions in the Mediterranean 
(CZ9), where LUCAS has quite low number of samples from. 
 
According to the data from the LUCAS Topsoil Survey, differences between SOC concentration in annual 
and permanent croplands is statistically significant (on a 0.05 level) only in the Sub-oceanic (CZ3), 
Temperate mountainous (CZ6), Mediterranean semi-arid (CZ7) and in the Mediterranean mountainous 
regions (CZ9). In other regions, the difference in SOC content cannot be statistically proven by the LUCAS 
topsoil data. Nevertheless, these figures highlight the potential of the dataset to perform analysis on the 
effect of land use on SOC levels in different European regions.  
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6.2  Grasslands  

 
The dataset was sub-sampled to extract only the mineral soils of grasslands. In the context of the LUCAS 
programme, grasslands are defined as: 
 

� land predominantly covered by communities of grassland, grass like plants and shrubs (the 
LUCAS code is E00). The density of tree-crown is less than 10% and the density of tree+shrub-
crown is less than 20%.  

 
Sub-categories of grasslands in the LUCAS survey include: 
 

� pastures under sparse tree or shrub cover, coded as E10. This includes dry grasslands, dry 

edaphic meadows, steppes with gramineae and Artemisia, plain and mountainous grassland, 
wet grasslands, alpine and subalpine grasslands, saline grasslands, arctic meadows and 

temporarily unstocked areas within forests. 

� grassland without tree/shrub cover, coded as E20. Land is predominantly covered by 

communities of grassland, grass like plants and forbs without trees and shrubland. Temporary 
(and artificial) grassland is also included in this category.  

� spontaneously re-vegetated surfaces, coded as E30. This includes mostly agricultural land 

which has not been cultivated this year or the years before. It has not been prepared for 
sowing. This class can also be found on unused land, storage land, etc. 

 
In total, 4866 samples were categorised as representing grasslands (just over 24% of the final database). 
In this exercise, no division of sub-classes is made. 
 
No grassland samples were reported for Malta. 
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6.2.2 Regional variability of topsoil organic carbon of grasslands 

Data from the LUCAS soil survey confirms the common perception (Jones et al., 2005) that soil organic 
carbon (SOC) levels increase following a south-east to north-west trend in the EU. Higher organic carbon 
levels are found in Boreal and boreal to temperate, Atlantic, Sub-oceanic and the Temperate mountainous 
zones with highest mean values being found in the Atlantic Zone (CZ2) – reflecting the cool, humid 
conditions that encourage the growth of grasses and the accumulation of soil organic matter. Lowest 
values are found in the Mediterranean semi-arid zone (CZ8). Differences in SOC concentrations attributed 
to climatic factors can exceed 200% between mineral soils under grasslands in the Atlantic region and 
those in the Mediterranean semi-arid climate (Table 6.2).  
 
However, standard deviation values highlight the high variability of SOC concentrations within climatic 
zones. In every zone, SOC levels reach, or even exceed, the magnitude that was measured between mean 
levels of the different climatic zones.  
 

Table 6.2. Soil organic carbon concentration (g/kg) in the mineral topsoils of grasslands in different climatic regions of 
Europe 

Climate zone Mineral soils 

No. Name mean std n 

1 Boreal and boreal to temperate 28� 19� 529�
     

2 Atlantic 40� 22� 1178�
     

3 Sub-oceanic 34� 16� 748�
     

4 Sub-oceanic to sub-continental 24� 20� 600�
     

5 Subcontinental, partly arid 26� 19� 166�
     

6 Temperate mountainous 34� 18� 208�
     

7 Mediterranean semi-arid 17� 12� 423�
     

8 Mediterranean temperate and sub-oceanic 25� 18� 304�
     

9 Mediterranean mountainous 22� 12� 60�
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6.3  Shrublands  

 
The dataset was sub-sampled to extract only the mineral soils of shrublands. In the context of the LUCAS 
programme, shrublands are defined as: 
 

� land dominated (i.e. more than 20% of the surface) by shrubs and low woody plants. It may 
include sparsely occurring trees within a limit of a tree-crown area density of 10%. In central 
part of the EU, only heath lands and some ruderal communities fall into this category. 

 
Sub-categories of shrublands within the LUCAS survey include: 
 

� Shrubland with sparse tree cover (coded as D10). These are areas dominated (more than 

20% of the surface) by shrubs and low woody plants, including sparsely occurring trees with a 
tree-crown area density between 5 and 10 %. This class includes scrub land (pines, 
rhododendrons, maquis, matorral and deciduous thickets) and heathland with gorse, heather or 
broom. 

� Shrubland without tree cover (coded as D20). These are areas dominated (more than 20% 

of the surface) by shrubs and low woody plants. Sparsely occurring trees should not cover more 
than 5% of the area. This class includes scrub land (pines, rhododendrons, maquis, matorral 
and deciduous thickets), dwarf shrub tundra with dwarf birches and willows, heather and dwarf 
juniper vegetation, garrigues with strawberry trees, thyme, white rock rose, lavender and 
rosemary, heathland with gorse, heather or broom, spiny Mediterranean heaths (phrygana) and 
xerophytic areas with succulents.  

 
In total, only 425 samples were categorised as representing shrublands (just over 2% of the final 
database).  
 

No shrublands were reported for Belgium, Luxembourg, Malta or the Netherlands. 
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6.3.2 Regional variability of topsoil organic carbon of shrublands 

Data from the LUCAS soil survey confirms the common perception (Jones et al., 2005) that soil organic 
carbon (SOC) levels increase following a south-east to north-west trend in the EU (Table 6.3). For 
shrublands, higher organic carbon levels are found in Boreal and boreal to temperate, Atlantic, Sub-oceanic 
and the Temperate mountainous zones with highest mean values being found in the Atlantic Zone (CZ2) – 

reflecting the cool, humid conditions that encourage the growth of understory grasses and the 
accumulation of soil organic matter. Lowest values are found in the Mediterranean semi-arid zone (CZ8). 
SOC concentrations in mineral soils under shrublands in the Atlantic region are around 100% higher than 
those in the Mediterranean semi-arid climate, reflecting the very different climatic and vegetative factors. 
It is worth reflecting that mean topsoil organic carbon levels in shrublands are higher than those of 
grassland in all climatic zones. 
 
However, standard deviation values highlight the high variability of SOC concentrations within climatic 
zones. In every zone, SOC levels reach, or even exceed, the magnitude that was measured between mean 
levels of each individual climatic zone.  
 

Table 6.3. Soil organic carbon concentration (g/kg) in the mineral topsoil of shrublands in different climatic 
regions of Europe 

Climate zone Mineral soils 

No. Name mean std n 

1 Boreal and boreal to temperate 39� 29� 62�
     

2 Atlantic 41� 26� 38�
     

3 Sub-oceanic 36� 21� 16�
     

4 Sub-oceanic to sub-continental 39 17 16�
     

5 Subcontinental, partly arid 28 16 11�
     

6 Temperate mountainous 34 19 20�
     

7 Mediterranean semi-arid 23 16 108�
     

8 Mediterranean temperate and sub-oceanic 36 25 136�
     

9 Mediterranean mountainous 25 24 18�
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6.4  Woodlands 

 
The dataset was sub-sampled to extract only the mineral soils of woodlands. In the context of the LUCAS 
programme, woodlands are defined as: 
 

� areas covered by trees with a tree crown area of at least 10%. Woody hedges also belong to 
this class. 

 
Sub-categories of woodlands within the LUCAS survey include: 
 

� Broadleaved and evergreen woodland (coded as C10). These are areas with a tree-crown 

area density of more than 10% and composed of more than 75% of broadleaved/evergreen 
species such as acacia (Acacia ssp.), alder (Alnus ssp), ash (Fraxinus excelsior), aspens (Populus 
tremula), beech (Fagus sylvatica), birch (Betula sp.), carob (Ceratonia siliqua), elm (Ulmus sp.), 
eucalyptus (Eucalyptus globulus), hedge (Acer campestre), hornbeam (Carpinus betulus), linden 
(Tilia ssp.), maple (Acer sp.), palm trees of the Mediterranean and Macaronesian zones (Phoenix 
theophrasti, Ph. canariensis), poplars (Populus nigra), oaks (Quercus sp), rowan (Sorbus 
aucuparia), wild olive (Olea europaea ssp. sylvestris) and willows (Salix sp.). 

 

� Coniferous woodland (coded as C20). These are areas with a tree-crown area density of 

more than 10% and composed of more than 75% of coniferous species such as cedars (Cedrus 
sp.), cypresses (Cupressus sempervirens), firs (Abies sp.), Douglas firs (Pseudotsuga menziesii), 
larches (Larix ssp), pines (Pinus sp.: Scots pines, Black pines, Siberian pines, Weymouth pines, 
Maritime pine, Mediterranean stone pine etc), spruce (Picea sp), xerophyte conifers: (Brutia pine, 
Umbrella pine, Aleppo pine, Corsican pine) and Christmas trees. 

� Mixed woodland (coded as C30). These are areas with a tree-crown area density of more than 

10% and composed of broadleaved/evergreen and coniferous comprising both >25% of the 
tree canopy. 

For larger plots, woodlands in the LUCAS database are also given a secondary forest cover code according 
to the forest type classification of the European Environment Agency (e.g. boreal, mesophytic deciduous 
forest, mire and swamp forests, plantations). 
 

In total, 4441 samples were categorised as representing woodlands (just over 22% of the final database).  

No woodlands were reported for Malta. 

Given the wide range of tree spices, this analysis is only intended as a broad overview of the data collected 
from woodland environments. The reader is also directed to documentation on the corresponding Biosoils 
data collection programme. 

http://eusoils.jrc.ec.europa.eu/esdb_archive/eusoils_docs/other/EUR24729.pdf 
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6.4.2 Regional variability of topsoil organic carbon of woodlands 

Data from the LUCAS soil survey confirms the common perception (Jones et al., 2005) that soil organic 
carbon (SOC) levels increase following a south-east to north-west trend in the EU (Table 6.4). However, 
samples from the Mediterranean mountainous have a mean level that is comparable to more northern and 
westerly parts of the EU. 

 
For woodlands, higher organic carbon levels are found in Boreal and boreal to temperate, Atlantic, Sub-
oceanic, Temperate mountainous and Mediterranean mountainous zones with highest mean values being 
found in the Atlantic (CZ2) and Sub-oceanic zones – reflecting the cooler and humid conditions that 
encourage the accumulation of soil organic matter. Lowest values are found in the Mediterranean semi-
arid zone (CZ8). SOC concentrations in mineral soils under woodlands in the Atlantic region are over 200% 
higher than those in the Mediterranean semi-arid climate, reflecting the very different climatic and 
vegetative factors. It is worth reflecting that mean topsoil organic carbon levels in woodlands are higher 
than those of both shrublands and grassland in all climatic zones apart from the Sub-oceanic to sub-
continental and Mediterranean semi-arid zones. 
 
However, standard deviation values highlight the high variability of SOC concentrations within climatic 
zones. In every zone, SOC levels reach, or even exceed, the magnitude that was measured between mean 
levels of each individual climatic zone.  
 

Table 6.4. Soil organic carbon concentration (g/kg) in the mineral topsoil of woodlands in different climatic 
regions of Europe 

Climate zone Mineral soils 

No. Name mean std n 

1 Boreal and boreal to temperate 42 27 2238�
     

2 Atlantic 44 27 396�
     

3 Sub-oceanic 44 25 358�
     

4 Sub-oceanic to sub-continental 31 23 614�
     

5 Subcontinental, partly arid 29 22 144�
     

6 Temperate mountainous 43 26 208�
     

7 Mediterranean semi-arid 19 12 165�
     

8 Mediterranean temperate and sub-oceanic 36 24 279�
     

9 Mediterranean mountainous 40 29 39�
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6.5  Peat 

 
Around 5% of the LUCAS dataset (1013 samples) are regarded as coming from peat soils (i.e. containing 
very little or even no mineral material). Organic soil is commonly known as peat (or Histosols in 
international soil classification schemes) and is formed through the accumulation of partially decayed 
vegetation in wetland conditions where water limits the levels of oxygen from the atmosphere thus slowing 
down rates of decomposition. Low temperatures also contribute to the formation of peat 
  
Within the LUCAS survey, peat is recognised as occurring in peat bogs (H12), inland marshes (H11), peat 
extraction sites (U140 Mining and quarrying) and mire and swamp forests.  
 
No peat samples were reported for the partly arid Subcontinental (CZ5), Mediterranean temperate and sub-

oceanic (CZ8) or the Mediterranean mountainous (CZ9) zones.  
 
In addition, no peat samples were reported for shrublands in the Sub-oceanic (CZ3), Sub-oceanic to sub-
continental (CZ4), Temperate mountainous (CZ6) and Mediterranean semi-arid (CZ7) zones while no peat 
samples were reported for woodlands of the Mediterranean semi-arid (CZ7) zone.  
 
Only a single sample was collected for Temperate mountainous grassland (CZ6) and Mediterranean semi-
arid grassland (CZ7) while fewer than ten samples were collected for Sub-oceanic (CZ3) woodlands and 
grasslands. 
 
While the absence of samples in specific cover types and climate zones may reflect the restricted sampling 
design, it also reflects warm and dry climatic conditions that generally do not favour the formation of 
extensive peat lands. Given the limited number of samples in many climate zones, the use of the LUCAS 
Topsoil Database for pan-European studies or assessments on peat lands may be problematic and should 
be restricted to specific regions where the number of samples is greater. 
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6.5.1 Regional variability of topsoil organic carbon of peat soils 

The limited number of samples restricts the possibilities of making valid statistical comparisons between 
the various climatic zones. Data from the LUCAS soil survey show (Table 6.5) that mean values of organic 
carbon in toplayer of peat are generally consistently above 260 g/kg (values with limited number of 
samples are not considered).  
 
The highest mean value was found in the shrublands of Atlantic zone (CZ2) followed by the woodlands of 
the Boreal and boreal to temperate zone (CZ1) although standard deviation values are high in all cases, 
generally reaching 25-30% of mean values.  
 

Table 6.5. Soil organic carbon concentration (g/kg) in topsoil of peat in different climatic regions of Europe  

Climate zone Land use 
type 

Peat soils 

No. Name mean std n 

1 Boreal and boreal to temperate WL 399 98� 779
  SL� 354� 96� 13�
  GL� 349� 89� 46�
2 Atlantic WL� 325� 106� 36�
  SL 402 78� 14�
  GL� 358� 92� 50�
3 Sub-oceanic WL� 236� 37� 7�
  SL� � � �
  GL 240 16� 2�
4 Sub-oceanic to sub-continental WL� 335� 100� 34�
  SL� � � �
  GL 368 81� 19�
5 Subcontinental, partly arid WL� � � �
  SL� � � �
  GL� � � �
6 Temperate mountainous WL 260 49� 11�
  SL� � � �
  GL� 230� � 1�
7 Mediterranean semi-arid WL� � � �
  SL � �
  GL� 81� � 1�
8 Mediterranean temperate and sub-oceanic WL� � � �
  SL� � � �
  GL � �
9 Mediterranean mountainous WL� � � �
  SL� � � �
  GL � �
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6.6  Organic-rich mineral soils 

 
Within the LUCAS Topsoil Survey, 431 samples (around 2% of the dataset) are considered are representing 
organic-rich mineral soils. These samples have been identified as having a soil organic carbon content 
greater than 12% but less than 20% (see section 6.5).  These limits reflect commonly used thresholds in 
soil science (e.g. FAO, WRB, soil taxonomy). In these samples, significant amounts of mineral matter were 
also present in the sample. 

Organic-rich mineral soils generally reflect humid conditions and are often saturated with water for 
significant lengths of time (thus, inhibiting the decay of organic matter). Organic-rich soils are often 
referred to as possessing ‘peaty’ or humic topsoils. In general, the bulk densities and pH levels of organic-
rich mineral soils tend to be lower than corresponding mineral soils. Porosity, water holding capacity and 
cation exchange capacity of organic-rich soils are also generally higher than mineral soils, 

  
 

6.6.1 Regional variability of topsoil organic carbon of organic-rich soils 

 
While the absence of samples in a specific climate zone zones may reflect the restricted sampling design, 
the distribution of samples also reflects the wet and humid climatic conditions that generally favour the 
formation of elevated levels of organic matter in soil.  
 
Organic-rich mineral soils are mostly associated with woodlands and shrublands (in the Mediterranean 
mountainous zone (CZ9), a single sample was collected from a grassland). 
 
The highest number of samples was collected in the Boreal and boreal to temperate zone (CZ1) while the 
least samples came from the Mediterranean semi-arid (CZ7) and Mediterranean mountainous zone (CZ9), 
with only a single sample from a woodland and a grassland site, respectively.  
 
In addition, no samples were reported for shrublands in the Sub-oceanic to sub-continental (CZ4) or the 
partly arid Subcontinental (CZ5) zones. 
 
In addition, only a single sample was collected for Sub-oceanic shrublands (CZ3), Temperate mountainous 
shrublands and grasslands (CZ6) and Mediterranean temperate and sub-oceanic grassland (CZ8). 
 
Given the limited number of samples in many climate zones, the use of the LUCAS Topsoil Database for 
pan-European studies or assessments on organic-rich soils may be problematic and should be restricted to 
specific regions where the number of samples is greater.  However, the following broad conclusions may be 
observed in Table 6.6. 
 
Mean values of organic carbon in the topsoils of organic-rich mineral soils show considerable variation 
across the different climatic zones. Values in the Mediterranean region (layer of peat are generally 
consistently above 260 g/kg (values with limited number of samples are not considered).  
 
The highest mean values were found in the shrublands of cool and humid climates of CZ1 and CZ2 (168 
and 160 g/kg C respectively) while 159 g/kg C were found in the grasslands of the Sub-oceanic to sub-
continental zone (CZ4).  In general, woodlands show a consistent level of OC in all climate zones 
(approximately 150 g/kg C). In fact the mean level of OC in CZ1 is identical to that of CZ8 even through the 
climates are very different. In northern and western regions, comparable values are found for shrublands 
and grasslands, although for the latter two cover types, the values are lower in the Temperate Mountains 
and Mediterranean zones.    
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Table 6.6. Soil organic carbon concentration (g/kg) in topsoil of peat in different climatic regions of Europe  

Climate zone Land use 
type 

Peat soils 

No. Name mean std n 

1 Boreal and boreal to temperate WL� 153� 23� 241�
  SL� 168� 23� 10�
  GL 152 22� 19�
2 Atlantic WL� 157� 22� 21�
  SL� 160� 22� 7�
  GL� 151� 22� 39�
3 Sub-oceanic WL 149 23� 15�
  SL� 128� � 1�
  GL� 143� 27� 10�
4 Sub-oceanic to sub-continental WL� 146� 22� 21�
  SL � �
  GL� 159� 26� 15�
5 Subcontinental, partly arid WL� 156� 25� 3�
  SL � �
  GL 121 1� 2�
6 Temperate mountainous WL� 150� 24� 14�
  SL� 133� � 1�
  GL 123 � 1�
7 Mediterranean semi-arid WL� 157� 28� 3�
  SL� � � �
  GL� � � �
8 Mediterranean temperate and sub-oceanic WL 153 39� 4�
  SL� 137� 24� 2�
  GL� 138� � 1�
9 Mediterranean mountainous WL� � � �
  SL � �
  GL� 121� � 1�

 

As expected, the OC of organic-rich mineral soils is markedly higher than all mineral soils from cropland, 

grassland, shrubland and woodlands by around 300% but around 50% of the value of peat soils. 
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6.8 Conclusions 

As the first harmonised soil assessment across almost all Member States, the LUCAS topsoil survey 
resulted in a unique dataset that allows a series of comparative assessments to be made on the soil 
resources of the EU. The LUCAS dataset is enhanced by the associated information on land use/cover on 
the sampling locations. This report provides an overview of the survey methodology and resultant database 
and highlights some of the geographic tendencies in topsoil properties across the EU.  

An important component of the LUCAS topsoil database is the library of multispectral properties. However, 
the analysis of multispectral properties was beyond the scope of this current study. 

This initial general assessment of the database aimed to reveal the potential of the information it contains. 

These potentials are certainly unique from a scientific aspect but also for the formation of soil related 
policies in the EU. 
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7. Interim�results�of�continuous�mapping�topsoil�properties�of�the�European�
Union�on�a�continental�scale�using�LUCAS�Soil�data�

7.1  Generating continuous soil maps from point observation and auxiliary 

information 

 

Cristiano Ballabio 

 

Digital Soil Mapping (DSM) deals with the production of continuous soil maps or maps of soil properties 
form heterogeneous data sources through the use of machine learning or statistical techniques. The most 
common task is to produce geographically continuous maps (i.e. maps covering the entire surface of a 
given region) from scattered point data. This is generally due to soil surveys providing a limited number of 
field observations, which are insufficient to estimate soil properties over large areas by simple averaging. 
For instance, the points of the LUCAS dataset have a minimum distance of 2 km (determined by the 
general LUCAS grid). However, it is not possible to consider the sampled point as representative of a larger 
area (the area over which the soil was sampled for any single observation), nor is it possible to average the 
value of several point to obtain an estimate for a region because a reasonably accurate estimation would 
require a quite high number of points, resulting in very large estimation surfaces. 

An alternative approach to the problem of the estimation of soil properties from soil surveys is to establish 
a relation between the soil property of interest and a series of environmental covariates, representing a 
series of factors influencing soil formation. This approach follows the paradigm of soil science where the 
distribution of soil features is generally attributed to a series of interacting environmental factors driving 
soil development. This concept stems from the work of Vasily Dokuchaev who attributed changes in soil 
properties to both changes in geology and climatic or topographic conditions. Hans Jenny formalised this 
relationship in his famous equation S=f(CL, O, P, R, T, …), where soil properties S are defined as the 
combination of the effects of climate CL, organisms O, parent material P, relief R and time T while leaving 
the possibility to introduce additional variables in the equation. In spite of its formal appearance, Jenny’s 
equation is purely qualitative and aims to describe a concept more rather than making effective predictions 
of soil properties. Nonetheless, since Jenny published his formulation, it has been used by soil surveyors as 
a qualitative expression for understanding the factors that may be help in producing the soil pattern within 
a region. Numerous researchers have taken the quantitative path and have tried to formalise this equation. 
Mostly through studies where one factor varies and the rest are constant, resulting in quantitative 
climofunctions, topofunctions, etc.  

DSM follows the concepts expressed in Jenny’s equation. However, instead of expressing an empirical 
relation, DSM aims to find an actual mathematical relation between soil properties and a combination of 
environmental features. This is usually achieved using a statistical regression procedure to relate a set of 
environmental features with a set of observed soil properties. Subsequently soil properties are extrapolated 
or interpolated from the fitted model for all the unvisited locations where the prediction is needed. In 
practice the DSM approach follows Hans Jenny’s approach but establishes a quantitative relationship 
instead of a qualitative one. 

Limitations in the sampling design and possible limitations in the modelling process may mean that 
procedures to develop continuous mapping of soil parameters may not capture all spatial variation. 
Consequently, certain areas may be subject to high uncertainty (see Fig. 7.2). 

Regions that are above 1,000 m in elevation, peatlands and non-soil areas (e.g. urban, water, bare rock) 
have been excluded from the following maps. 
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7.2  Topsoil organic carbon content map  

 

Delphine de Brogniez and Cristiano Ballabio 

 

The measured organic carbon content of LUCAS soil samples is used to produce a map of topsoil organic 
carbon (SOC) content at European scale. The dynamic of the latter soil parameter is influenced by different 
factors such as climate (e.g. rainfall, temperature), vegetation cover, mineralisation rate, land management 
practices as well as soil physico-chemical properties.  

In order to predict SOC it is necessary to establish a relation between measured SOC and independent 
variables (covariates) representing the above-mentioned factors. These variables must be available as 
continuous data layers so that to allow the prediction of SOC content at unsampled locations. Digital soil 
mapping through regression consists in fitting a statistical regression model between the soil property to 
predict and the value of the independent variables at the same locations. The soil property is then predicted 
at unsampled locations by applying the fitted model on the covariates. 

In the present case study, a generalized additive model (thin-plate splines) was fitted using generalized 
cross-validation. Predictive environment variables used were CORINE20065 land cover, elevation and slope 
(SRTM derived), soil texture, temperature, ratio of rainfall and potential evapotranspiration also referred to 
as aridity index (WorldClim global climate database), geology (BGR geological map of Europe), net primary 
productivity (MODIS land-product), latitude and longitude. The overall model-fitting performance (adjusted-
R2) is 0.46. The root mean squared error (RMSE) is 79.3 and the normalized RMSE is 13.5%. 

The predicted SOC content is presented in figure 7.1. 

 

������������������������������������������������������������

5�CORINE2006�was�not�available�for�Greece.�The�data�of�CORINE2000�were�therefore�used�for�the�latter�country�since�
no�change�in�the�classification�occurred�between�both�datasets�release.�
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7.4 �Topsoil�sand�,�silt��and�clay�maps�
 

Cristiano Ballabio 

Soil sand-, silt- and clay content as measured (in %) in the samples of the LUCAS database were 
extrapolated to the full extent of the EU by means of a regression tree model using remotely sensed data 
as support covariates. The approach was to model soil particles as a dependent (in the statistics sense) 
variable, whereas the seasonal variation of vegetation cover was taken as an independent descriptor. Soil 
vegetation dynamic was derived from remotely sensed data with a high temporal resolution. In this case 
the data used was the MODIS 16 day vegetation indexes (NDVI and EVI) which provide some information 
about the seasonal dynamics of vegetation over Europe. As the vegetation dynamics is substantially 
controlled by climate, the difference in the plant growth and senescence cycle, once the climatic effect is 
removed, is substantially controlled by the soil available water content, which in turn is controlled by soil 
texture and soil organic matter content. 

The regression model was then fitted using climatic data from the WorldClim global climate database, 
geomorphometric variables (elevation and slope) and MODIS derived vegetation indices. Vegetation 
dynamics was modelled using strictly concave splines to generate a prototype yearly cycle from the data 
collected over many years (2000-2008). 

The model fitting resulted in very good performance metrics: fitting R2 = 0.6. The model was also tested 
using k-fold cross-validation (500 repetitions with a proportion of 0.2 validation/fitting instances) giving an 
R2 = 0.56. The standard error varies from 5.44 to 6.8%. 

Since the three textural components (sand, silt and clay) are mutually correlated, the first prediction made 
was done on the textural component which could be predicted with the best accuracy, in this case sand. 
Thereafter each other component was predicted by constraining the sum of the three to be equal to 100. 

Results of the digital mapping of the sand, silt and clay content are presented in Figures 7.4 - 7.6 
respectively.  
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7.5  Topsoil nitrogen content and C:N ratio maps 
 

Cristiano Ballabio 

 
Nitrogen (g kg-1) and the C:N ratio of the LUCAS samples was extrapolated to the full extent of the EU by 
mean of a regression tree model using remotely sensed data as support covariates. Given the high 
correlation between SOC and nitrogen content, the approach applied was similar to the one presented in 
section 8.1. In this case, nitrogen was considered as the independent variable, whereas the seasonal 
variation of vegetation, mineralisation rate, land management practices as well as soil physical and 
chemical properties cover were taken as an independent descriptor. Soil vegetation dynamic was derived 
from remotely sensed data with a high temporal resolution (MODIS 16 day vegetation indexes: NDVI and 
EVI) which provide some information about the seasonal dynamics of vegetation over Europe.  
 
In the present case study, a generalized additive model (thin-plate splines) was fitted using generalized 
cross-validation. Predictive environment variables used were elevation and slope (SRTM derived), ratio of 
rainfall and potential evapotranspiration also referred to as aridity index (WorldClim global climate 

database), net primary productivity (MODIS land-product), latitude and longitude, seasonal MODIS EVI and 
NDVI.  
 
The overall model-fitting performance for the nitrogen content (adjusted-R2) is 0.701. The standardized 
error is 0.264. 
 
The overall model-fitting performance for the C:N ratio (adjusted-R2) is 0.603. The standardized error is 
4.67. 
 
The predicted nitrogen content and C:N ratio are presented in figures 7.7 and 7.8. 
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8. Spatial analysis of soil properties of the European Union 

8.1  Estimation of topsoil organic carbon stock of the European Union and its 

Member States for the reference year of 2009 

 
Gergely Tóth, Cristiano Ballabio, Delphine de Brogniez and Tamás Hermann 

 

8.1.1 Introduction 

Soil organic carbon (SOC) concentration is a site specific soil characteristic, which is attributable to soil-

forming factors such as climate, vegetation, parent material and land use.  

Pedotransfer rules (PTRs) are techniques to estimate SOC concentration in situations where direct 

measurements are not available, or not adequate for spatial representation on the required scale. PTRs 

developed to characterise SOC levels of European soil types (EC 2003) were combined with climate and 

land use data by Jones et al. (2004) to derive spatial estimates of topsoil SOC content on a continental 

scale for Europe. The resulting spatial dataset, the so-called OCTOP data serves as the main information 

base on topsoil carbon content for various purposes to date. Although validation of the OCTOP data were 

performed using regional datasets, only with the availability of the LUCAS Soil data a full understanding of 

the model performance became feasible. Initial analyses of the model validity of OCTOP by Tóth (2011) 

and Panagos et al. (2012) described regional variation in its estimation inaccuracy. According to Tóth 

(2011), the model performance of OCTOP has a systematic error in relation to climatic patterns. Panagos et 

al. (2013) has added detailed data – based on analysis of SOC content in administrative units - to support 

this argument.  

Digital soil mapping applies geostatistical processes of georeferenced data from different sources to derive 

continuous maps of soil properties. Brogniez and Ballabio (2013; Chapter 7.2 of this report) present a map 

of topsoil organic carbon concentration based on LUCAS point measurements and auxiliary information 

(land use, texture, climate, terrain characteristics).  

The objective of our current study is to make use of the measured LUCAS topsoil SOC data to derive 

estimates for organic carbon stocks of topsoil (uppermost 20 cm) in the European Union. Two approaches 

were followed for the estimations. The first approach based its calculations on the SOC concentration 

values within distinct climate zones derived from the OCTOP map of Jones et al. (2004) and the measured 

LUCAS Topsoil data in the same climate zones. Statistical differences between the estimated (OCTOP) and 

measured (LUCAS) concentrations were used to estimate SOC stocks for each climatic zones of the EU for 

the year 2009. In the second approach, topsoil SOC estimates were made on the bases of the continuous 

map presented by Brogniez and Ballabio (2013).  
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8.1.2 Spatial datasets used 

i. Organic carbon data  

a) The OCTOP raster dataset (Jones et al. 2004) was used as primary input layer for the statistical analysis 

and spatial calculations.  

b) Measured SOC data from the LUCAS points was used for comparative assessment with the OCTOP data 

on 19969 points and to establish correction measures for predicting SOC stocks. 

b) The Topsoil Organic Carbon Content map of de Brogniez and Ballabio (2013) published in this report 

(Chapter 7.2) has been utilised for estimating topsoil SOC stocks for the EU and its Member States. 

 

ii. Land use data 

The CORINE (CO-oRdination of INformation on the Environment; JRC-EEA 2005) land cover database was 

used to select the extent of croplands (annual and permanent), grassland and forest for the analyses. The 

CLC database provides information on land cover in European countries, including member states of the 

European Union (JRC-EEA, 2005). CORINE Land Cover data from two years (2000 and 2006) was used. 

Basic mapping units of the CLC databases (2000 and 2006) are 25 ha in size displayed on a map of 

1:100,000 scale or 100 m resolution. Each data cell is classified according to the dominant land cover type 

or by the mixture of land covers.  

 

iii. Climate data  

Climatic zonation based on the 35 climatic areas of Hartwich et al. (2005) served as spatial units for SOC 

assessments on the continental scale. Regrouping of the Climatic Areas was performed to create climatic 

zones (Chapter 6, Figure 6.1). 

 

iv. Topsoil bulk density data 

Spatial data on different topsoil ‘packing density’ (PD_TOP) is available from the European Soil database 

(ESDB; EC 2003). Bulk density values are derived from this packing density data using the equation 

proposed by Jones et al. (2003). Jones et al. provides numeric relationships between packing density and 

bulk density values, conditioned by clay content and quantify the meaning of qualitative categories of 

packing density for mineral soils. For the special cases of Histosol areas, mean bulk density value (0.32 

g/cm3) of Histosols in the EU-HYDI database (Weynants et al. 2013) was used. It is worth noting, that with 

new data on bulk densities the accuracy of estimations can be considerably increased. 

 

v. Soil typological units 

The Soil Geographical Database of Eurasia (SGDBE) from the European Soil Database (ESDB; EC 2003) was 

used as the soil information source to separate areas with Histosols and other soil in this study. 
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8.1.3 Methods and results 

Two methods were tested simultaneously to derive estimates for topsoil (upper 20 cm) organic carbon 

stocks of the European Union for the baseline year of 2009.  

The first method used the OCTOP map (Jones et al. 2004) as an underlying continuous spatial dataset. To 

date OCTOP has been the only available dataset to characterise SOC in the soils of Europe. To estimate the 

differences between predicted (OCTOP) and measured (LUCAS) SOC concentrations were established for 

main climatic zones (Figure 6.1.1) and land cover classes (e.g. annual croplands, permanent croplands, 

grassland and woodland). These coefficients indicate differences between estimated regional SOC 

concentration values of the OCTOP raster data and those derived from measured LUCAS Topsoil data. 

OCTOP-based SOC stocks by climatic regions and land uses were calculated using SOC concentration values 

of the OCTOP raster and the bulk density raster. For areas of Histosols - as delineated from the ESDB - a 

separate bulk density value (0.32 g/cm3) was applied. OCTOP-based stock estimates were modified by the 

coefficients (by climate region and land use; for Histosols separately) to arrive to an estimated SOC stock 

for the European Union for the baseline year of 2009. To establish topsoil SOC values for areas other than 

cropland, grassland and woodland, the average concentrations estimated for these land use types were 

used.  

According to the estimations, organic carbon stock in the topsoil of the 25 EU Member States which 

participated in the 2009 LUCAS Topsoil Survey come to a total of 54.5 gigatonnes. Based on the 

combination of LUCAS data and OCTOP map and including an estimate for Bulgaria and Romania - based 

on the proportional land area of these countries within the EU and in the climate zone they located - the 

total topsoil SOC stock of the EU in the year 2009 and can be estimated as 56.9 gigatonnes. Over 70 % of 

this stock is in the Boreal and Atlantic regions. 

The second method – based on digital soil mapping - used the topsoil organic carbon map presented by 

Brogniez and Ballabio (2013; see Chapter 7.2 of this report) in combination with the bulk density raster 

created using the above described methodology. SOC stock estimates using the second approach are 

presented for the Members States of the European Union that were covered by the LUCAS survey in 2009. 

Table 8.1 presents the result of the estimations for individual countries. Based on the country specific 

figures (and considering the land area and soil conditions of Bulgaria and Romania) topsoil (uppermost 20 

cm) organic carbon stock of the European Union is estimated as 51.9 gigatonnes using the digital soil 

mapping approach. 

8.1.4 Conclusions 

Two methods were applied to estimate organic carbon stocks of the topsoil in the European Union. One 

method based its estimations on the OCTOP map of Jones et al. (2004) and the measured SOC 

concentrations of the LUCAS Topsoil survey, while the other method is based on the SOC concentrations 

derived using digital soil mapping techniques. The first and the second method resulted estimates of 56.9 

and 51.9 gigatonnes of SOC stock for the uppermost 20 cm of soil, respectively. Considering the 

uncertainties in both estimation methods (e.g. varying areal share of soils with different SOC concentration 

within climatic zones (first approach) or reliability of the spatial model (second approach), under sampling 

of wetlands and peatlands) but also the similarities of the results, the topsoil (upper 20 cm) SOC stocks of 

the EU in 2009 can be assumed to be between 50 and 60 gigatonnes. Further studies are necessary to 

establish accurate measures. In such studies, apart from increasing the reliability of spatial SOC 

concentration estimates of continuous SOC map layers, increased accuracy of soil bulk density information 

has to play a major role.  
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Table 8.1. Estimates of soil organic carbon stocks in the topsoil of EU Member States, as derived from the 

digital topsoil organic carbon map of the EU (De Brogniez and Ballabio 2013) 

 

Member State 
Total SOC stock of 

the topsoil 
(Gigatonnes in top 20 cm) 

Mean SOC 

concentration* 
(g/kg)

STD of SOC 

concentration* 
(g/kg) 

Austria 0.85 44 16 

Belgium 0.25 34 14 

Czech Republic 0.51 25 8 

Denmark 0.56 53 9 

Estonia 0.72 65 15 

Finland 10.45 131 24 

France 3.74 28 11 

Germany 2.76 30 9 

Greece 0.6 21 7 

Hungary 0.55 23 6 

Ireland 1.95 130 44 

Italy 1.78 26 14 

Latvia 0.92 52 15 

Lithuania 0.75 42 10 

Luxembourg 0.02 33 9 

Netherlands 0.24 28 13 

Poland 1.65 20 10 

Portugal 0.6 26 11 

Slovakia 0.33 28 10 

Slovenia 0.2 43 11 

Spain 2.47 20 13 

Sweden 12.59 124 32 

United Kingdom 3.86 69 49 

 

*Mean SOC values and standard deviation figures for countries are solely for orientation purposes, they 

have very limited scientific meaning. 
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8.2  Applicability of LUCAS Soil data to improve predictions of soil water retention in 

the EU 

 

Melanie Weynants and Gergely Tóth 

 

8.2.1 Introduction 

Pedotransfer functions (PTFs) are a useful tool to predict soil hydrological properties where no such data 
are available. Especially, for large scale studies, they can provide information on the soil hydrological 
behaviour that can be used as input for hydrological models. 

Pan-European PTFs predicting the parameters of Mualem-van Genuchten model (van Genuchten, 1980) 
were developed in the 1990's in the framework of HYPRES project (Wösten, Lilly, Nemes, & Bas, 1999). 
According to the available input data, the user has the choice between a class PTF based on the FAO 
texture classes or a continuous PTF based on the silt, clay, organic matter contents and the bulk density. 
Both PTFs are widely used and it is worth wondering how they perform on pan-European datasets in terms 
of expected accuracy and geographical reliability. 

 

8.2.2 Datasets and pedotransfer functions 

The Soil Geographical Database of Eurasia (SGDBE) (Lambert, et al., 2003) is part of the ESDB (European 
Commission Joint Research Centre, 2003). It provides a harmonized set of soil parameters covering Eurasia 
and Mediterranean countries at scale 1:1,000,000. Information in SGDBE is available at the Soil Typological 
Unit (STU) level, characterised by attributes specifying the nature and properties of soils. These properties 
are estimated either by expert judgment or derived from a set of pedotransfer rules (PTR), in the form of 
categorical data. For mapping purposes, the STUs are grouped into Soil Mapping Units (SMUs) since it is not 
possible to delineate each STU at the 1:1,000,000 scale.  

The Land Use/Land Cover Area Frame statistical Survey (LUCAS), launched in 2001, aims at monitoring the 
land cover and land use at the European Union level with a harmonized methodology. The survey is 
conducted every three years at geo-referenced positions on a regular 2 x 2 km grid. During the 2009 
survey, a subset of about 21000 points, sampled in 23 member States, included an assessment of the 
topsoil (0-30 cm). The points were selected to be representative of the European Union soils, stratified 
according to topography and land use. Physicochemical analyses were conducted in a central laboratory, 
providing a coherent assessment of soils from 23 member States (EU-27 except Cyprus, Malta, Bulgaria 
and Romania). 

The two datasets (SGDBE and LUCAS-soil) differ in several ways. The first covers a larger area (Europe and 
Russia) and provides information on typical soil profiles, but this information is in the form of categorical 
estimations. The second gives measured information for the topsoil at specific points. Both can be used for 
predicting the soil hydrologic properties using pedotransfer functions (PTF). However the outputs will be 
different. 

HYPRES PTFs (Wösten, Lilly, Nemes, & Bas, 1999) predict the parameters of functions describing the soil 
water retention and unsaturated hydraulic conductivity curves (the so-called Mualem-van Genuchten). Two 
types of PTFs are available. A class PTF based on the soil texture classes and a continuous PTF based on 
the soil silt, clay, organic matter contents and its bulk density. Only the first can be applied on SGDBE 
because this dataset does not contain continuous values. The second can be applied on LUCAS-soil dataset, 
but first the particle size distribution has to be transformed and the bulk density needs to be estimated 
using another pedotransfer function. 
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8.2.3 Methods 

Sandy and silty materials have no unique definition. In LUCAS Topsoil database, the cut-off value of the 
diameter of particles between the two materials is 63 μm while HYPRES PTFs uses 50 μm. The cumulative 
particle size distribution was therefore transformed using cubic spline interpolation (Hollis et al, 2006). 

Bulk density is an entry parameter of the HYPRES continuous PTF. Since it was not measured in LUCAS 

Topsoil survey, this factor was estimated based on a multiple regression calibrated and validated on 
subsets of the HYPRES database. 

HYPRES PTFs were applied on both SGDBE and LUCAS-soil and the results were compared at two different 
pF values (pF = log10(-h), with h the suction head [cm]). 

 

8.2.4 Results 

 

Figure 8.1 shows differences between water contents at pF 2.5 (-333 cm of water column) obtained by 
running HYPRES continuous PTF on the LUCAS Topsoil dataset and HYPRES class PTF on dominant STU. The 
dominant STU is the most represented STU in the SMU overlaying the LUCAS point. Seven classes of 
differences are shown as well as both their spatial distribution and their density distribution (surfaces are 
proportional to the number of instances). Small differences (between -0.03 and 0.03 in water content) are 
the most numerous (24%). They are closely followed by the next classes of differences: about 20% of the 
points show differences between -0.1 and -0.03 and again about 20% between 0.03 and 0.1. The 
remaining 36% of the points show differences larger than 0.1 in absolute value. However this comparison 
encompasses both the differences of texture between the two datasets and the differences due to the use 
of the class and continuous PTF. In Figure 8.2 and Figure 8.3, the two effects are separated. 

Figure 8.2 shows the differences between water contents at pF2.5 estimated with HYPRES class PTF on 
LUCAS and on the dominant STU. This shows the effect of the differences in texture values between the 
two datasets. 47% of the points show small differences (between -0.03 and 0.03 of water content), 11% 
show medium differences (between 0.03 and 0.1 in absolute value), 27% show large differences (between 
0.1 and 0.25 in absolute value) and 8% show very large differences (more than 0.25 in absolute value).  

The spatial distribution of the differences is very contrasting. Very large differences are mainly observed in 
Northern Europe (Sweden, Finland, Estonia, Latvia, Lithuania, Ireland, etc). Of course, this comparison is 
based on the dominant soil typological unit (STU) in each soil mapping unit (SMU) and does not consider the 
other STUs in the SMU. Nevertheless, using the dominant STU is a common approach used for mapping 
purposes, when the mapped variable cannot be averaged between STUs. This shows the limitations of the 
SGDBE and the potential of LUCAS Topsoil database for estimations of the soil hydraulic properties across 
Europe. However, as the LUCAS Topsoil Survey is a point dataset, it needs to be interpolated to be 
applicable for continuous mapping purposes. 

Figure 8.3 shows the differences between water contents at pF2.5 estimated on LUCAS-soil with the 
continuous and the class HYPRES PTFs. This illustrates the effect of using a class or a continuous 
pedotransfer function. 38% of the points show small differences (between -0.03 and 0.03 in water 
content). For 31% of the points, the continuous PTF results in smaller (difference less than -0.03) water 
contents than the class one. For 29%, it is the contrary (difference greater than 0.03). Hence, only 40% of 
the points show very small differences. Nevertheless, no point shows very large difference (greater than 
0.25 in absolute value). This illustrates the impact of using a class or a continuous PTF. This does not mean 
that the continuous is more correct: these data do not allow us to evaluate the validity of one or the other 
PTF. It shows that using a continuous PTF generates more variability in the hydraulic properties, which 
might be closer to reality. 
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8.3 Soil erodibility estimation of the EU using LUCAS point survey data  
 

Panos Panagos, Katrin Meusburger, Christine Alewell and Luca Montanarella 

8.3.1 Introduction 

Soil erosion caused by water is a multivariate phenomenon and can be attributed to a number of basic 
agents, which may also trigger erosion in combination. One of the most widely used soil erosion models is 
the USLE which predicts the long term average annual rate of soil erosion on a field slope based on a 
multiplicative formula of rainfall erosivity, soil erodibility, slope, crop management and support practices. In 
most studies, the estimation of soil erodibility is restricted by limited data availability and the 
regionalisation technique elaborated by Van Knijff et al. (2000). This method is based on the five textural 
classes of the European Soil Database at a scale of 1:1,000,000 (ESDB) (Panagos, 2006). According to 
Pérez-Rodríguez et al. (2007), current soil maps do not provide sufficient information to assess soil 
erodibility. Thus, the use of interpolation techniques in combination with spatially distributed field data 
allows for a better representation of the soil erodibility. 

The main objective of this communication is to assess the soil erodibility in terms of K-factor (Wischmeier 
and Smith, 1978) for the EU using the 2009 LUCAS Topsoil survey.  

 

8.3.2 Method for estimation of K-Factor 

The K-factor is a lumped parameter that represents an integrated average annual value of the soil profile 
reaction to the processes of soil detachment and transport by raindrop impact and surface flow (Renard et 
al., 1997). Consequently, the K-factor is best obtained from direct measurements on natural plots (Kinnell, 
2010). However this is an infeasible task on a national or continental scale. To overcome this problem, 
measured K-factor values have been related to soil properties. The most widely used relationship is the 
soil-erodibility nomograph of Wischmeier and Smith (1978) that defines the following equation: 

K = ((2.1 10−4 M1.14 (12−OM) + 3.25 (s−2) + 2.5 (p−3))/100)*0.137 [1] 

where OM is organic matter(%), s is the soil structure class, and p is the permeability class. M is the textural 
factor: percentage silt + fine sand fraction content multiplied by 100 – clay fraction. K is expressed in SI 
units of t ha h ha-1 MJ-1 mm-1.  

The erodibility factor was calculated for each LUCAS topsoil point and interpolated to create a map using 
the inverse distance weighting (IDW) method due to the limited availability of significant covariates on a 
European scale. The IDW method is based on the assumption that the soil erodibility at an un-sampled 
point is a distance weighting average of soil erodibility values of the nearby sampling points (in this case 

20). The IDW method can yield a prediction for variables with a very high spatial variability (Angulo-
Martinez et al., 2009). The quality of the interpolation was tested on an subset of 25% of the data. 

 

8.3.3 Results and Discussion 

The K-factor values (t ha h ha-1 MJ-1 mm-1) obtained by using equation [1] range between 0.013 and 0.087 
with a mean value of 0.041 and a standard deviation of 0.013. The IDW interpolation with a power 
parameter of 2 performed best (R2 adjusted=0.81) to interpolate LUCAS point data to a soil erodibility map 
of Europe (Figure 8.4). Visually, the spatial pattern of high soil erodibility follows in large parts the 
distribution of loess in Europe (Haase and Fink, 2007).  
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Comparison of K-factors between countries (Table 8.2) illustrates that there is a degree of stratification 
since Mediterranean countries (Italy, Spain, Greece, and Portugal) have mean K-factors between 0.039 and 
0.042 (t ha h ha-1 MJ-1 mm-1). The highest mean values are found in central European countries (Belgium, 
Slovakia, Luxembourg, Czech Republic, Austria and South Germany) where mean values range between 
0.047 and 0.054. Finally, a part of northern Europe (Denmark, Netherlands and North Poland) and the Baltic 
States (Latvia, Estonia and Lithuania) show the lowest mean values ranging less than 0.039. The 
coefficient of variation, expressed as a ratio between standard deviation and mean value, illustrates the 
dispersion of K-factor values inside the country. Ireland, Austria and Slovakia showed low variability while 
the highest ones are found in Netherlands, Germany and Poland. 

The LUCAS dataset enables an unbiased overview of soil erodibility over Europe. However, it should be kept 
in mind that, depending on the region, K-factors obtained from field measurements may differ 
considerable from K-factors deduced from the empirical equation [1]. For a global assessment, IDW proved 
to be suitable. However, in-depth analysis of potential covariates and geo-statistical methods in order to 
interpolate the 22,000 points will be a future research question. 

 

8.3.4 Data availability 

The soil erodibility data are available to download as raster files in the European Soil Data Centre (ESDAC) 
electronic platform allowing modellers to use the K-factor for their regional, national or European 
applications.  

Public users are able to access the data for free (no cost) by accepting the license agreement which is the 
proof that the user agrees with the conditions about data use. ESDAC has established a 
username/password automatic authentication mechanism for users who have registered to download the 
data. Registration is a simple process through a web form requesting the name of the user, their 
organisation, E-mail address, country of origin and purpose for which the data will be used.  

Most ESDAC data are used for research purposes (modelling, research projects, PhDs, publications, etc.), 
followed by policy making and implementation of studies/assessments (Panagos et al., 2013). 
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8.3.5 Conclusions and applications 

The proposed dataset has the significant advantage that it is derived from a first ever pan-European soil 
sampling campaign. The data harmonisation is guaranteed since samples have been collected in a 
systematic manner during the same period and analysed by a single certified laboratory. The current study 
offers an enormous improvement in the precise estimation of K-factor on European level comparing with 
past methodologies which have derived this attribute based only on five textural classes and relatively 
coarser scale. 

The ESDAC, as the single information focal point for soil data in Europe, provides the soil erodibility data to 
a vast majority of scientists for soil erosion applications. In case of European or national applications, the 
soil erodibility data can be used as it is. At local or regional scales, where soil data are missing, the K-factor 
estimation is offered as an input layer for interpolation using other covariates. In case of local assessments 
where erodibility data are available from local soil databases, the present study can be proposed as 
supplement for cross validating the local K-factor estimation. 

References 

Angulo-Martínez et Al, 2009, Mapping rainfall erosivity at a regional scale: a comparison of interpolation 
methods in the Ebro Basin (NE Spain). Hydrol. Earth Syst. Sci., 13, 1907-1920, 2009 

Haase, D., J. Fink, et al. (2007). "Loess in Europe - its spatial distribution based on a European Loess Map, 
scale 1 : 2,500,000." Quaternary Science Reviews 26(9-10): 1301-1312. 

Kinnell P.I.A. (2010) Event soil loss, runoff and the Universal Soil Loss Equation family of models: A 
review. Journal of Hydrology,385, pp.384-397. 

Martino L. & Fritz M. (2008) New insight into land cover and land use in Europe, Statistics in Focus, 33, 
Eurostat, Luxembourg 

LUCAS, 2009. Land Use and Cover Area frame Survey. Web address: 

http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/methodology. Accessed September 2011. 

Panagos P., Van Liedekerke M., Jones A., Montanarella L. European Soil Data Centre: Response to European 
policy support and public data requirements. Land Use Policy, 29 (2), 329–338.  

Panagos, 2006. The European soil database, GEO: connexion 5 (7), pp. 32-33. 

Perez-Rodriguez R., Marques M.J., Bienes R. Spatial variability of the soil erodibility parameters and their 
relation with the soil map at subgroup level (2007) Science of the Total Environment, 378 (1-2), pp. 
166-173. 

Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC. Predicting soil erosion by water: a guide to 
conservation planning with the revised universal soil loss equation (RUSLE). Agricultural handbook 703. 
Washington, DC: U.S. Department of Agriculture; 1997. 404 pp. 

Van der Knijff, J.M., Jones, R.J.A., Montanarella, L., 2000. Soil erosion risk assessment in Italy. European 
Soil Bureau. European Commission, JRC Scientific and Technical Report, EUR 19044 EN, 52pp. 

Wischmeier, W.H. & Smith, D.D. 1978. Predicting rainfall erosion losses – a guide for conservation 
planning. U.S. Department of Agriculture, Agriculture Handbook 537. 

 

Table 8.2. Descriptive statistics of K-factor for European Union countries based on the LUCAS point survey 
(t ha h ha-1 MJ-1mm-1) 
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Country Mean Max.

Standard 

Deviation

Coefficient of 

variation 

Austria  0.047 0.070 0.010 0.204 

Belgium  0.054 0.078 0.013 0.247 

Czech Republic  0.047 0.076 0.012 0.250 

Denmark  0.031 0.054 0.008 0.276 

Estonia  0.039 0.073 0.013 0.345 

Finland  0.040 0.084 0.013 0.329 

France  0.045 0.081 0.012 0.280 

Germany  0.040 0.077 0.014 0.349 

Greece  0.040 0.073 0.010 0.261 

Hungary  0.044 0.074 0.014 0.316 

Ireland  0.039 0.064 0.007 0.182 

Italy  0.042 0.077 0.011 0.267 

Latvia  0.039 0.077 0.011 0.279 

Lithuania  0.040 0.081 0.011 0.268 

Luxembourg  0.048 0.058 0.012 0.254 

Netherlands  0.035 0.064 0.013 0.364 

Poland  0.034 0.081 0.013 0.389 

Portugal  0.039 0.080 0.012 0.302 

Slovakia  0.049 0.068 0.011 0.218 

Slovenia  0.045 0.067 0.011 0.232 

Spain  0.041 0.087 0.011 0.258 

Sweden  0.043 0.085 0.013 0.301 

United Kingdom  0.040 0.078 0.011 0.270 
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9. Prediction of SOC content by Vis-NIR spectroscopy at European scale  

Marco Nocita, Antoine Stevens, Gergely Tóth, Bas van Wesemael, Luca Montanarella 

 

9.1 Introduction 

 
Soil organic carbon (SOC), a main component of global carbon cycle, plays also a major role in regulating 
and maintaining ecosystem functions, including atmospheric exchanges of CO2. Global soil resources, in 
their current state have a high potential to sequester atmospheric carbon totalling around 78 Pg of C, or 1 
Pg C yr-1 (Lal and Follett, 2009). Therefore, there is a clear and increasing demand for the monitoring of 
carbon levels in soils, particularly on agricultural land, as it is the prime space for SOC to be increased 
through adequate management practices (Lal et al., 2004). The cost of the traditional soil information 
system still limits the monitoring of soil properties at large scale, and must be overcome with inexpensive 
and accurate SOC assessment methods (Conant et al., 2010). Laboratory Visible (Vis, 400-700 nm) and 
near-infrared (NIR, 700-2500 nm) diffuse reflectance spectroscopy (DRS) has shown to be an efficient and 
not invasive tool for the rapid and cheap prediction of SOC (Islam et al., 2003). Since the 80’s many 

scientists�have used Vis-NIR DRS to accurately predict SOC�content. This technique was mostly applied�in 

the laboratory�(Dalal and Henry, 1986; McCarty et al., 2002). However, Vis-NIR DRS has been also used in 
the field with portable spectrometers (Morgan et al., 2008; Stevens et al., 2008) with promising results.  

However the level of accuracy of SOC predictions achieved by soil spectroscopy at large scale did not meet 
the accuracy found at local or field scale studies. The LUCAS topsoil samples were scanned with a Vis-NIR 
spectrometer in the same laboratory. The scope of our research was to predict SOC content at European 
scale using the LUCAS spectral library coupled with a modified local PLS (l-PLS) multivariate regression 
method. The general concept is that most regression surfaces can be fitted locally using linear models 
(Naes et al., 2001). Basically, a group of predictors similar to the sample to be inferred is chosen from a 
large spectral library and a specific equation is computed to predict every analyzed sample (Shenk et al., 
1997). The advantage of local regressions is based on the accuracy obtainable with specific calibrations 
covering the spectral complexity of soils, and thus the high non-linear effects of a large database (Gogé et 
al., 2011). Genot et al. (2011) used the correlation coefficient between spectra as similarity index to select 
the homogenous group of predicting samples for each unknown sample. The l-PLS was modified to include 
other potentially useful covariates (geography, texture, etc.) to select the group of predicting neighbours. 
We believe that the application of l-PLS might favour a more accurate prediction of SOC due to the ability 
of l-PLS to account for the non-linearity of spectral signal compared to a global approach. 

 

9.2�Methodology 

The Vis-NIR reflectance was measured using a FOSS XDS Rapid Content Analyzer (NIRSystems, INC.), 
operating in the 400-2500 nm wavelength range, with 0.5 nm spectral resolution. Every sample was 
scanned twice and the mean was considered for subsequent analyses. 

Several pre-processing techniques, commonly used in soil spectroscopy, were applied: transformation of 
absorbance (A) spectra into reflectance ((1/10A)) and continuum removal (Clark and Roush, 1984), standard 
normal variate (SNV) and multiplicative spectral correction (MSC), Savitzky-Golay smoothing with a window 
size of 50 and 2nd order polynomial (Savitzky and Golay, 1964), first and second derivatives (Rinnan et al. 
2009). 

Local partial least square regression (l-PLS) was chosen to develop the SOC prediction models. The dataset 
was divided in mineral and organic soils (FAO, 1998) due to the extremely diverse spectral response of the 
two classes. Moreover, mineral soils were split in cropland, grassland, and woodland soils according to land 
cover classes of LUCAS database in order to improve the SOC prediction of soils with different 
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10.  LUCAS soil data in the ESDAC Web-Tool for Soil Point Data 

Marc van Liedekerke 

 

The European Soil Data Centre (ESDAC) of the European Commission manages soil related data at 

European level. Its flagship product is the European Soil Database, developed jointly with partners in 
participating countries and is the only harmonised coverage of digital soil information for Europe. This 
database, along with many other European soil related data, can be downloaded from the ESDAC 
(http://eusoils.jrc.ec.europa.eu/data.html).  

Many key datasets can also be visually inspected through an online application. The ESDAC Map Viewer 

uses standard web map serving technology that offers the user a view of, and navigating functionalities 
through, European datasets. Over the last few years, the ESDAC has acquired a number of point-based soil 
datasets that technically could not easily be integrated in the ESDAC Map Viewer since the standard 
technology did not offer the possibility to easily customise special functionality required when visualising 
such point data. Therefore, a dedicated spatial data application was designed and implemented with the 
objective of giving access to the point soil data in ESDAC through one single web-based tool. Currently, this 
tool incorporates the LUCAS and BioSoil point data sets and a web mapping interface to these two data 
sets for viewing and querying;  

The viewer is currently visible only within the European Commission intranet and has been tested on major 
Internet browsers. Eventual access to the general public will be provided through an accepted licence 
agreement. 

Figure 10.1 illustrates the ESDAC Map Viewer, featuring on the right side the navigation buttons and the 
selection of Layers. For this figure, the user has zoomed in on the region around Belgium and included the 
ancillary layer of ‘Rivers’ and the layer expressing the soil type according to the WRB scheme. As can be 

seen, the user can select from a wide range of layer types: soil threats (e.g. erosion, compaction), texture, 
parent material, etc. 
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11. Overall conclusions and implications for future LUCAS Topsoil Surveys 

With almost 20,000 samples, the 2009 LUCAS Topsoil Survey is the first attempt to build a consistent 
spatial database of the soil cover across twenty-five Member States of the European Union (Bulgaria and 
Romania were surveyed in 2012) based on standard sampling and analytical procedures. These data are 
further complemented by supporting information on land use practices and land cover, and the changes in 
these conditions. 

Preliminary analysis of these data (presented in this report) show that there are significant variations in soil 
properties between different land cover types and different climatic zones. The LUCAS database provides 
an excellent baseline to assess changes in topsoil characteristics across the EU.  Digital soil mapping 

techniques have been used to generate preliminary maps of soil characteristics across the EU. However, 
further investigation is needed to assess their validity. Limitations in the sampling design and possible 
limitations in the modelling process may mean that procedures to develop continuous mapping of soil 
parameters may not capture all spatial variation. Consequently, certain areas may be subject to high 
uncertainty. 

It should be stressed that there is a bias in the sampling design towards arable land. Around 43% of all 
samples were collected from croplands. The corresponding area of croplands for the EU-24 is 
approximately 34%. 

Some soil types (e.g. saline, shallow, urban, peat soils in the Mediterranean region) and some land cover 
types (e.g. areas under nature protection, wetlands, highlands, urban soils and natural grasslands) are likely 
to be under represented. Sampling density in these regions should to be increased.   

With an additional 25% survey points figures on most land uses can achieve the same reliability for 
European scale assessment as for croplands.   

The characteristics of the topsoil (i.e. the uppermost 20 cm) may also be very different to those deeper in 
the soil body. On a limited number of the surveyed locations - which are representative from a pedological 
viewpoint - full soil profile descriptions would be essential to allow the assessment of the dynamics of soil 
resources in Europe. 

With some additional simple field and laboratory measurements (e.g. soil resistance against penetrometer, 
electric conductivity for salt content determination), the scale of soil quality descriptions can be 
considerably enlarged with little additional resource. 
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Abstract�

In 2009, the European Commission extended the periodic Land Use/Land Cover Area Frame Survey (LUCAS) to sample and analyse the main properties of 

topsoil in 23 Member States of the European Union (EU). This topsoil survey represents the first attempt to build a consistent spatial database of the soil 

cover across The EU based on standard sampling and analytical procedures, with the analysis of all soil samples being carried out in a single laboratory. 

Approximately 20,000 points were selected out of the main LUCAS grid for the collection of soil samples. A standardised sampling procedure was used to 

collect around 0.5 kg of topsoil (0-20 cm). The samples were dispatched to a central laboratory for physical and chemical analyses. Subsequently, Malta and 

Cyprus provided soil samples even though the main LUCAS survey was not carried on their territories. Cyprus has adapted the sampling methodology of 

LUCAS-Topsoil for (the southern part of the island) while Malta adjusted its national sampling grid to correspond to the LUCAS standards. Bulgaria and 

Romania have been sampled in 2012. However, the analysis is ongoing and the results are not included in this report.The final database contains 19,967 

geo-referenced samples. 

 

This report provides a detailed insight to the design and methodology of the data collection and laboratory analysis. All samples have been analysed for the 

percentage of coarse fragments, particle size distribution (% clay, silt and sand content), pH (in CaCl2 and H2O), organic carbon (g/kg), carbonate content 

(g/kg), phosphorous  content (mg/kg), total nitrogen content (g/kg), extractable potassium content (mg/kg), cation exchange capacity (cmol(+)/kg) and 

multispectral properties. Subsequently, heavy metal content is being analysed but the result are not yet available and thus not included in this report. 

 

Based on the results of the survey, the regional variability of topsoil properties within the EU has been assessed and a comparative soil assessment of 

European regions and countries is presented. A series of predictive maps have been prepared using digital soil mapping methodologies that show the 

variation of individual parameters across the EU. In addition, the data have been used in studies to determine the SOC stock of the uppermost 20 cm of soil 

in the EU. While the LUCAS approach is designed for monitoring land use/land cover change, potential bias in the sampling design may not necessarily 

capture all soil characteristics in a country. Finally, a customised application has been developed for web browsers that allow users to view and query the 

LUCAS dataset in a variety of ways. 
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As the Commission’s in-house science service, the Joint Research Centre’s mission is to provide EU 

policies with independent, evidence-based scientific and technical support throughout the whole policy 

cycle. 

 

Working in close cooperation with policy Directorates-General, the JRC addresses key societal 

challenges while stimulating innovation through developing new standards, methods and tools, and 

sharing and transferring its know-how to the Member States and international community. 

 

Key policy areas include: environment and climate change; energy and transport; agriculture and food 

security; health and consumer protection; information society and digital agenda; safety and security 

including nuclear; all supported through a cross-cutting and multi-disciplinary approach. 
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