CONTENTS

Acronyms and abbreviations .. 11
Key Messages .. 13
Executive Summary .. 15

1 Introduction .. 21
 1.1 Background and objective .. 21
 1.2 Soil organic matter ... 21
 1.3 The global carbon cycle ... 23
 1.4 Climate change, land use and soil carbon 25
 2 Effects of climate change on soil carbon 27
 2.1 Introduction .. 27
 2.1.1 An overview of processes and their response to climate change 27
 2.1.2 Can we detect effects of climate change on soil carbon reliably and accurately? .. 29
 2.2 Climate change factors and their effects on soil carbon 30
 2.2.1 Effects of elevated atmospheric CO₂ 30
 2.2.2 Effects of temperature ... 31
 2.2.3 Effects of changes in precipitation 33
 2.2.4 Interactions with nitrogen and phosphorus 35
 2.2.5 Integrated analysis of the combined effects by modelling 36
 2.2.6 Assessment: Uncertainties and knowledge gaps 37
 2.3 General methodologies to estimate changes in soil carbon ... 38
 3 Monitoring systems used to estimate changes in soil carbon .. 41
 3.1 Description of available monitoring schemes 41
 3.2 Evaluation of available monitoring schemes 45
 3.2.1 Limitations of existing and proposed monitoring schemes 45
 3.2.2 Costs of soil carbon monitoring 45
 3.2.3 European harmonisation 46
 3.3 Recommendations for monitoring schemes 47
 3.3.1 Considerations when making recommendations 47
 3.3.2 Towards harmonisation of monitoring schemes in Europe 47
 4 Carbon storage and trends in Europe 51
 4.1 Introduction .. 51
 4.2 Carbon storage and trends ... 51
 4.2.1 Carbon pool estimates .. 51
 4.2.2 Carbon trends ... 57
 4.2.3 Conclusions .. 65
 5 Peat soils .. 69
 5.1 Introduction .. 69
 5.2 Peat formation .. 69
 5.3 Occurrence of peat in the European Union 71
 5.3.1 Peat extraction .. 74
 5.3.2 Peat soils used in agriculture 76
 5.4 Emissions of greenhouse gases from drained peatland 76

5
Glossary...125
References..133

List of Annexes

Annex 1 Methodologies to estimate changes in soil carbon.........................179
Annex 2 Inventory of available datasets on soil organic carbon (SOC) or soil organic
matter (SOM) in cultivated agricultural land (arable land and grassland) and non-
cultivated land for the assessments of changes in SOC or SOM content as a result of
land use and management in response to the threat “Decline of soil organic matter”;
the information has been collected within the RAMSOIL framework
(http://www.ramsoil.eu/UK/Results/Project+Reports+WP2/)..........................185
Annex 3 Examples of monitoring schemes in European countries..................187
Annex 4 Carbon trends in grassland, cropland and forest soil: methods and their
reliability..189
Annex 5 Case studies for assessing changes in soil carbon stocks..................191
Annex 6 Share of soil organic carbon in 0-30 and 0-100 cm............................195
soil resources, World Soil Resources Report 84, Food and Agriculture Organization
of the United Nations, Rome). ..197
Annex 8 Overview of fuel peat use in selected countries..................................199
Annex 9 Summary of methodological choices of countries on soil categories by relevant
land use and land use change categories based on the respective national inventory
reports submitted to the UNFCCC in April 2008. Note that information of only those
countries is included that provided appropriate methodological information in their
report. Note also that much more information may be available in the upcoming new
round of the national inventory reports due in April 2009..............................201
Annex 10 Effect of nitrogen on SOC..205

List of Tables

Table 1 Expected responses of soil carbon and the underlying processes to key
environmental change factors. (Note: “Uncertainty” refers to the direction of the soil
carbon response: uncertainty about magnitudes of change are high throughout.)29
Table 2 Total number (N) of actual monitoring sites, number (n) of sites where carbon
content (%) is measured, theoretical number (n1) of sites needed to detect a relative
decrease of 5% of the national mean of topsoil organic carbon contents according to
national statistics on variances, number (n2) of additional sites needed in
comparison with n1, number (n3) of additional sites needed in comparison with N
(taken from ENVASSO, see Arrouays and Morvan, 2008)............................43
Table 3 Soil Organic Carbon Stock Estimates from JRC pan-European Spatial Layer,
USAD NRCS SOC Map and national estimates; the available national figures are all
based on observations and measurements on soil organic matter or soil organic
carbon and use pedo-transfer rules to calculate stocks of SOC....................54
Table 4 Estimated changes in soil carbon pool under different land uses in Europe. Positive figures mean increase in the pool, negative ones decrease; sd stands for standard deviation. ... 64

Table 5 Occurrence of peat covered land area (km²) in the European Union Member States and Candidate Countries. ... 73

Table 6 Emissions of CO₂, CH₄, and N₂O (in ton km⁻² a⁻¹) estimated according to the drained peatland area. Typical annual emissions for each land use type are derived from the IPCC Emission Factor Database (www.ipcc-nggip.iges.or.jp/EFDB) for boreal and temperate peatlands, denoted by "*", and from Alm et al. (2007); all unmarked emission factors. CO₂-equivalents are calculated using GWP (100 yr) conversion factors 21 for CH₄ and 296 for N₂O, respectively .. 77

Table 7 Emissions of GHG of peatsoils in agricultural use. Calculation are based on:草地 emissions 20 tonne CO₂ ha⁻¹ a⁻¹; cropland emissions 40 tonne CO₂ ha⁻¹ a⁻¹ (see Fig. 5 and Oleśczuk et al., 2008); C/N ratio = 20 (assuming that the major part of agricultural peat soils are fen peats); 1.25 % of mineralized N converted into N₂O (Mosier et al., 1998). Cropland area and grassland area are based on Byrne et al., 2004. .. 80

Table 8 Summary of effect of land use change on soil carbon. .. 85

Table 9 Effect of a selection of mitigation measures on carbon sequestration in agriculture. .. 87

Table 10 Emissions or removals per unit area for mineral and organic soils for the main land use and land use change categories for the EU countries that submitted CRF tables based on the most recently submitted national inventory reports to the UNFCCC (usually 15 April 2008 submissions). Categories are denoted by abbreviations of the category in the previous year followed by the category in the current year, e.g. FL-FL for forest land remaining forest land, and L-FL for (any) land converted to forest land. L means (any) land, CL is for cropland, GL is for grassland, WL is for wetland, SE is for settlements, and OL is for other land (i.e. the land use categories by IPCC). IE means 'included elsewhere', NO means 'not occurring', NE means 'not estimated', NA means 'not applicable'.. 105

Table 11 CAP reform measures and assumed impact climate-related characteristics of farm systems in Europe.. 111

Table 12 Overview of potential impacts of EU policies on carbon sequestration............... 123

List of Figures
Figure 1 The changing forms of organic matter (University of Minnesota, Organic matter management). ... 22
Figure 2 Principal global carbon pools in Pg (1 Pg = 1 Gt = 10¹⁵ g). 23
Figure 3 Schematic diagram of carbon cycle, with (above) main pools and flows of the natural global C cycle, and (below) human perturbation to the flows of C (in Pg) between the pools. ... 24
Figure 4 Climate change affects the soil carbon pool and vice versa changes in soil carbon affect the climate. For these relationships, land use and land management are major factors. ... 26
Figure 5 Processes leading to formation and loss of soil carbon 28

Page 8
Figure 6 Maps of density of sites at which on the left in a) topsoil organic carbon content is measured and on the right b) topsoil organic carbon stocks can be calculated without necessity of further assumptions for bulk density and/or for calculation of organic C from organic matter. (Source: ENVASSO report, Arrouays & Morvan, 2008). ... 42

Figure 7 Soil Organic Carbon Content Estimates for Europe.. 53

Figure 8 Map of peat cover in Europe (JRC).. 72

Figure 9 Comparison of areas collected from literature (Current peatland area) and areas derived from the Map of OC in Topsoils of Europe (Montanarella et al., 2006). The points represent those countries for which both estimates could be derived. 74

Figure 10 Fuel peat extraction (1000 ton) in 1990-2005 in selected EU countries according to statistics collected by the UN. ... 75

Figure 11 CO₂ emission of peat soils. Agricultural peat soils have at least a mean ditchwater level of 20 cm minus soil surface. Data collected by Couwenberg et al. (2008) are based on direct measurements of CO₂ emissions and data by Van den Akker (Fens NL, unpublished data) are based on CO₂ emissions calculated from measured mean annual subsidence. ... 79

Figure 12 Global economic mitigation potential ... 101

Figure 13 One-to-one copy of Table A-209 of NIR USA (2008) where US factors are compared to IPCC default values. ... 108

Figure 14 One-to-one copy of Table A-211 of NIR USA (2008) where US factors are compared to IPCC default values. ... 108