
Soil pH in Europe 
 
The JRC created a  quantitative map of estimated soil pH values across Europe from a compilation 
of 12,333 soil pH measurements from 11 different sources, and using a geo-statistical framework 
based on Regression-Kriging.  Fifty-four (54) auxiliary variables in the form of raster maps at 1km 
resolution were used to explain the differences in the distribution of soil pHCaCl2 and the kriged map 
of the residuals from the regression model was added. The goodness of fit of the regression model 
was satisfactory (R2adj = 0.43) and its residuals follow a Gaussian distribution. The lowest values 
correspond to the soils developed on acid rock (granites, quartzite’s, sandstones, etc), while the 
higher values are related to the presence of calcareous sediments and basic rocks. The validation of 
the model shows that the model is quite accurate (R2adj = 0.56). This shows the validity of 
Regression-Kriging in the estimation of the distribution of soil properties when a large and 
adequately documented number of soil measurements are available. 
 
There is no consistent or harmonized soil profile database in Europe which allows for the generation 
of an overview of pH values across Europe using digital soil mapping techniques. Therefore, an 
attempt was made to combine, harmonize and QA/QC check values from 11 available databases in 
order to create a quantitative map of estimated soil pH values across Europe. It is realized that these 
databases reflect biased sampling strategies, non-precise coordinates, different sampling times (e.g. 
especially sensitive on agricultural soils) and many other factors which influence the predicted result.  
However, these databases represent a snap shot of available data on soil pH currently available in the 
European Soil Data Centre. The major distribution of soil pH with a reported quantitative 
uncertainty is described in order to determine the extent of the risk of acidification across Europe. 
 
Methodology 
 
Soil Database creation: Eleven soil profile databases which are available in the European Soil Data 
Center (ESDAC) have been used. The top layer of each soil profile stored in the following datasets 
has been obtained:   

o ICP-Forest (FSS),  
o soil profiles from the ecopedological map of Italy,  
o FOREGS (SALMINEN et al. 2007),  
o Spade (HIEDERER et al. 2006),  
o Soveur (NACHTERGAELE et al. 2002),  
o WISE (BATJES 2002),  
o Galicia (RODRIGUEZ LADO 2008),  
o Danube-SIS (Bavaria, Slovenia and Bulgaria) 
o Puglia Soil Database.  

 
Data were projected to the INSPIRE complained Lambert Equal Area (LAEA) projection, if not 
already available in that projection. The measurement of pH in the different databases was 
performed in different solutions (H20, KCl, CaCl2). For each database there was an adjustment, if 
necessary, to report the pH in CaCl2 solution.  
 
The following linear pedo-transfer functions were generated based on values reported for topsoil 
sampling locations from the WISE global soil database: 
 
[1] pHCaCl2 = 0.9761* pHH20 - 0.427 (R2 = 0.92, n=1997) 
[2] pHCaCl2 = 1.0572* pHKCl + 0.123 (R2 = 0.90, n =377) 
 



The validity of the global dataset derived pedotransfer function (pHKCl=0.87 pHH20, R2 =0.93) was 
tested by comparing it against the fit obtained from pH data measured in KCl and H20 from the 
Galicia DB (pHKCl=0.84 pHH20, R2 =0.75, n = 414); a good agreement was observed. 
 
Duplicate detection: A duplicate soil sampling location is defined as a point which is within 1,000 
m of another point. Some of the datasets used in the analysis have insufficient precision in their geo-
location, allowing for false positives. Duplicate points were identified and clustered with a minimum 
distance of 1,000 m to obtain single independent regions. From the total dataset of 12,333 sampling 
points, 2,093 were within 1,000 m of a neighboring point, resulting in 847 clusters. Clustering of the 
duplicates occurred mainly in regions where denser sampling occurred (e.g. Italy had 571 duplicates 
out of 5,114 records) however even random sampling designs such as the 813 points extracted 
from the FOREGS DB contained two sampling locations within 1,000 m of neighboring records. 
The average standard deviation of adjusted pHCaCl2 of all 847 clusters was 0.39 with a maximum 
standard deviation of 2.54, whereas the average difference between the minimum/maximum pHCaCl2 

at each cluster location was 0.6 with a maximum difference of 4.1 reached at sampling location in 
Galicia. Minimum was in both cases 0.0. Therefore one can specify the measurement/scale error for 
an analysis of ~0.5 unit pHCaCl2. 
 
 



 
 
Fig. 1: Spatial distribution of soil sampling locations from the 11 different soil databases 
 
 
Then it was checked if the chosen resolution was appropriate with respect to the pHCaCl2 point data. 



Coarsest, finest and recommended cell sizes were determined following HENGL (2006) and were 
~200 m, ~1km and ~4.7 km respectively. The 0.5 probability to meet the next point was reached at 
~3 km (0.95 at 30 km), for 2 points at ~5 km (0.95 at 43 km), for all points at 1,000 km (0.95 
probability at 2,700 km). 
 
Geo-statistical mapping:  
 
Regression-Kriging was used to estimate the pHCaCl2 values in soils of Europe. Firstly a linear 
regression model for the measured pH values was created against a number of auxiliary 
environmental variables and then the residuals of this regression model were interpolated by ordinary 
Kriging. The final map is an additive combination of both models. This technique allows to take into 
account the boundaries of some environmental features that can highly influence the distribution of 
the studied soil property in the final map of estimates, and thus to obtain more realistic predictions. 
 
The original dataset of observations (12,333 records) was divided using a random sampling function 
into a “model” dataset, that includes the 80% of the samples and a “validation” dataset, containing 
the remaining 20% of the samples, that was using for validation of the model. The “model” points 
dataset was used to build the multiple linear regression model. The derived regression equation has 
than been applied on the standardized 1 km resolution 56 auxiliary raster grids. The results have been 
aggregated to 5 km resolution. The auxiliary variables are either directly influencing soil pH or serve 
as a proxy for a factor: 
 

o Topography: The 1 km DEM was derived from the SRTM30 V2 dataset obtained from the 
JetPropulsion Laboratory. The SRTM DEM was used to derive a slope map, the 
Topographic Wetness Index (MOORE et al. 1991) and total incoming solar insolation 
(CONRAD 2001) using SAGA 2.0. 

 
o Geology: the digital map of main geologic surface units in Europe was used (PAWLEWICZ et 

al. 2003). The original legend was reduced to 10 classes according to the genetic nature of 
each unit: (1) Granites, rhyolites and quartzites; (2) Paleozoic schists, phyllites, gneisses and 
andesites; (3) Shales and sandstones; (4) Mesozoic Ultramafic, basic phyllites, schists, 
limestones and evaporates; (5) Jurassic, Triassic and Cretaceous calcareous rocks; (6) 
Cenozoic serpentinites, gabros and sand deposits; (7) Tertiary basanites and andesites; (8) 
Neogene and Paleogene calcareous rocks; (9) Quaternary limestones and basaltic rocks; and 
(10) Other Ultramafic and undefined rocks. 

 
o EVI remote sensing images: Monthly averaged MODIS images of the Enhanced Vegetation 

Index EVI at 1 km resolution for the period 01/01/2004 to 31/12/2006 were obtained 
from the MODIS Terra imagery at the Earth Observing System Data Gateway. A Principal 
Component Analysis was performed on the 19 complete mosaics and used the first five 
resulting components. 

 
o Image of Lights at Night: The lights at night image for the year 2003 was obtained from the 

Defense Meteorological Satellite Program (http://www.ngdc.noaa.gov/dmsp/), which 
measures night-time light emanating from the earth's surface at 1 km resolution. This map is 
a proxy for urbanisation and is now increasingly used for quantitative estimation of global 
socioeconomic parameters as well as for human population mapping (SUTTON 1997, 
SUTTON et al. 1997, DOLL et al. 2000). 

 



o Distance to infrastructures: The map of distances to roads, airports and utility lines was 
calculated using the distance operation in ILWIS and the GIS layers from the GISCO 
database of the European Commission. 

 
o • Cumulative Earthquake’s magnitude: The cumulative earthquake’s magnitude map was 

calculated by using the 90,000 registered earthquakes in period 1973-1994. These 
measurements were recorded in the Global Seismology point database 
(http://earthquake.usgs.gov/eqcenter/). The logarithmic measure of the “size” of an 
earthquake was used and then the point map was rasterized to the 10 km grid by using the 
point density operation in ILWIS. This operation sums all earthquake magnitudes observed 
within a 10 km grid and gives a cumulative map of earthquake activity. 

 
o Land use: The Corine Land Cover 2000 map of Europe generalized to a 1 km grid wa used. 

For Switzerland, the Corine Land Cover from 1990 was used since no updated information 
was available. The CLC1990 classes for this country were adjusted to those described in the 
CLC2000 and both datasets were merged together and aggregated to 1 km resolution. The 
original 44 classes were simplified to 8 classes: (1) urban infrastructures; (2) agriculture; (3) 
forest; (4) natural vegetation; (5) beaches; (6) ice bodies, (7) wetlands and (8) water bodies. 
Class 5 (beaches) disappeared in the process of upscaling from 100m to 1km. Additionally 
data from the Global Land Cover classification (FRITZ et al. 2003) has been used for areas 
where no Corine classification has been available.  

 
o Land forms: The land forms were calculated by a modified method proposed by IWAHASHI 

& PIKE(2007). Basically it combines the topographic variables slope gradient, surface texture 
and local convexity to create 16 classes of landforms from steep to gentle landforms with 
fine/coarse texture and low/high convexity. 

 
o Climatic variables: Mean annual temperature and accumulated precipitation maps were 

obtained from the very high resolution raster layers created by HIJMANS et al. (2005) on a 
global scale at 1 km grid resolution. The annual potential evapotranspiration (PET) was 
calculated from monthly temperature data using the THORNTHWAITE method (1948). 
Runoff was calculated as the difference between annual accumulated precipitation and 
annual potential evapotranspiration. 

 
o Alkalinity release rates due to the weathering of primary minerals in soils: The release of 

alkalinity by weathering of primary minerals in soils was calculated using the “Simple Mass 
Balance Method” as described in RODRIGUEZ-LADO et al. (2007). 

 
o Atmospheric deposition of contaminants: use was made of the estimated annual deposition 

and emission rates of cadmium, lead and mercury in Europe for year 2004 calculated within 
the European Monitoring Evaluation Programme (http://webdab.emep.int/). The original 
50 km grids were downscaled to 1 km grids using ordinary kriging. 

 
Non-soil surfaces such as water bodies (rivers, lakes, sea etc.) and permafrost areas were masked out. 
A consistent European wide water mask, indicating the percentage of water area inside a 1 km pixel, 
has been created based on the NASA SRTM V2 SWBDB dataset (RABUS et al. 2003), the CORINE 
land use classification, lakes contained in the GISCO data, base water reflection by the use of 
Image2000 dataset (DE JAGER et al. 2006), the GSHHS - Database (WESSEL & SMITH 1996), and the 
Global Lakes and Wetlands Database (LEHNER & DÖLL 2004). 
 
Areas with permanent ice cover have been detected using the mean annual EVI derived from the 



MODIS 1 km images obtained for the years 2003 and 2004. In this case, ice cover, water bodies and 
bare rock areas were detected based on a negative VI index. The total soil-cover area for these 26 
countries was estimated to be 4,217,241 km2.  
 
Each class within the categorical variables (geology, land use and land forms) was transformed to 
binary raster layers. Later all the auxiliary raster layers were standardized and finally converted to 54 
Principal Component raster maps by Principal Component Analysis in ENVI v4.3in order to 
minimize co-linearity between variables. The kriging of the residuals from the linear model was done 
directly in 5 km blocks. In addition a measurement of the estimation errors associated to the kriging 
interpolation method was obtained. 
 
Filtering the database of observations and building the regression model were performed in the 
statistical environment ‘R v.2.6.0”. The Principal Component Analysis of the standardized auxiliary 
variables was done using the image processing software ENVI. The raster linear model and the final 
Regression Kriging map were done in SAGA-GIS 2.0. 
 
Results and discussion: 
  
Descriptive statistics: The database used in this study is a compilation of samples collected in 11 
different surveys (Fig. 2). There is a high variability of pH values across Europe, ranging from 0.09 to 
1340. About 51 % of the samples present pH ≤ 10 while 41 % present values higher than 50 ppb. 
One can observe that the big survey campaigns across Europe (Soveur, Spade and FOREGS) 
present similar box-plot diagrams. However, the differences in pH are very evident when comparing 
regional campaigns on acidic soils like “Galicia” (parent materials mainly of granitic nature) and on 
calcareous soils like that in “Puglia” (mainly limestones). The higher pH measurements (pH =9) 
correspond to soils in Puglia (Italy) and high pH values (pH > 8) were also observed mainly in 
Bulgaria. Very low pH values (pH < 3) were observed in Bavaria (Germany), in the sandy soils from 
the “Landes” department in France, and in Belgium and UK. 
 
 
 

 
 
 

Fig. 2: Boxplot of the pH measurements by 11 different soil databases. 



 
 
Geostatistics of the original data: The semi-variogram of the original data shows a moderate 
spatial dependency with a range of around 50-100 km (half of the total variance) and a slight linear 
trend up to 500 km (Fig. 3). Further analysis showed that this trend is due to a slight anisotropy in 
the east direction, whereas the north direction shows a periodic pattern. The semivariance shows two 
additional nested structures, which can be observed with a range of 600 km (reaching variance 1.6) 
and 800 km (reaching the total variance ~1.85). These two additional structures are due to anisotropy 
in the north–south direction, whereas the west-south direction shows only a prolonged trend as 
described before. Automated approaches fitting a semi variogram based on the range and total 
semivariance exist (see HENGL 2007). However,these would have missed the 50-100 km scale 
variation structures. 
 

 
Fig. 3: Variogram of original pHCaCl2 

 
 
 
Linear Model results: The regression model obtained explains 43% of the variability (R2adj=0.433) 
and was significant at the p<0.05 level. Fifty one principal components contributed significantly 
(p<0.05) to the model (Tab. 1). The residuals of the regression model showed spatial structure and 
they were incorporated to the final model by ordinary-kriging using the software ISATIS V8.1 
(GEOVARIANCES 2008). A spherical variogram was fitted to the observed semivariances with a 



nugget of 0.55, a range of 20,000 and a sill of 1.22. The nugget/sill ratio (0.45) indicates that the 
residuals have a good spatial dependence. 
 

 
 

Tab. 1: Regression coefficients for the multiple linear model. 
 
 
As suspected, the following map (Fig. 4) shows that the spatial distribution of soil pH is highly 
dependent on the nature of the parent material. One can observe low pH values in the granitic areas 
all over the Hesperic massif (Portugal and north of Spain), in the Vosges mountains, in the Pyrenees, 
and in the shallow soils from Scandinavia, mainly developed on acid materials. The higher pH values 
(pH > 7) are mainly present in the sedimentary areas of the Mediterranean countries (Spain south of 
France, Italy, Albania and Greece) because of the calcareous nature of the parent material. One can 
also observe differences due to land use patterns and large scale climatic differences (e.g. the 
Mediterranean area versus Scandinavia). These results might be useful in guiding further research - 
for example – as to why specific stream water catchments in the Czech republic showed differences 
in pH time series in periods of increasing acidic deposition (VESELY et al. 2002). According to 
computations 16.7% of the territory has pH values lower than 4.2 and only 1.9 % of the area present 
values of pH > 8. The higher pH estimates are located throughout all European countries, mainly 
located close to major cities, or in arid areas with intensive agriculture area (southeast of Spain) or 
Deltas. The distribution of pH values in relation to land use classes (Fig. 5) showed that forest 
soils have lower pH values, while agricultural and urban areas present the higher mean values 
probably due to liming and the influence of the dissolution of cement in buildings. 
 
 



 
 
 

Fig. 4: Estimated values of pHCaCl2 for the EU27 MS and some adjacent countries. 
 
 
 



 
Fig. 5: Estimated pHCaCl2 boxplots for different major land uses 

 
 
 
 
 

Validation: The accuracy of the model was assessed by comparing the pH measurements and their 
estimates in the 2,362 samples from the validation dataset. A linear regression was performed 
between both variables to check their relationship and a significant correlation between them was 
obtained (R2adj=0.56, ɑ=0.05; Fig. 6). The equation of the regression model writes: 
 

pH measured = 1.34+0.779*pH predicted 
 
Most of the samples fall within the limits of the 95% prediction bands. This relationship 
demonstrates that in general, the model slightly underestimates the real pH measurements. The Root 
Mean Square Error of the predictions is low (RMSE=0.9). A Student’s t-test for paired samples (p < 
0.05) shows that there are not significant differences between measurements and the predictions.  
The model does show a good fit in the prediction of soil pH values. 
 



 
 

Fig. 6: Plot of measured vs. estimated pH in the validation dataset. 
 
 
CONCLUSION 
This study revealed that it was possible in a limited time and data frame to predict soil pHCaCl2. This 
might serve as a first proxy to the sensitivity of soils to the process of acidification. The linear model 
was satisfactory and the residuals showed clear auto-correlation structure. If new data are available to 
be included in the DSM process, the procedure can be recomputed and uncertainties reduced. Any 
further assessment of sensitivity of soils to acidification has to take into account not only the pH but 
the soil organic matter content, soil texture and Al and Fe contents (KOPTSIK & ALEWELL 2007) as 
well as the sulphate sorption capacity of soils. One possible approach would be to generate a  
buffering capacity map using Digital soil mapping techniques, therefore providing an additional data 
set to the already existing critical load acidity maps (HETTELINGH et al. 1991, 1993, 1995). However, 
first impressions are that such DSM approaches would need a dedicated sampling campaign as well 
as standardized measurements for these kinds of parameters that are generally missing in the 
databases used in the study. 
 
A further geo-statistical exercise would include simulations to predict probability density functions of 
the pHCaCl2 distribution. A disadvantage of this study is the lack of a temporal component. Most of 
the observations in the generated database contain no information on the time or timeframe of the 
sampling. If such information were available, maps for different times/time steps could be created, 
allowing results to be compared with changes in time as provided by e.g. de SCHRIJVER et al. (2006) 
or FÖLSTER et al. (2003). 
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