Tackling urban soil and groundwater contamination caused by chlorinated solvents
9 partners:

- NL Agency
 Ministry of Infrastructure and the Environment
- Stuttgart
- ITVA
- TOGETHER WE MAKE TOMORROW MORE BEAUTIFUL
- ADEME
- INERIS
- Gemeente Utrecht
- Ghent: so much city
- Mortsel
 een stad vooruit
INTERREG IVB North West Europe (NWE)

The aim of this financial instrument of the European Union’s Cohesion Policy is to

• stimulate transnational cooperation
• find innovative ways and tackle shared problems in the NWE region.
• touch the lives of citizens and thus contribute to a more cohesive EU society

The total research budget of CityChlor is 5.2 M. euro of which 50% is financed by Interreg IVB

www.nweurope.eu
Project’s objectives: improve the quality and minimize the pollution of soil and groundwater

Problem?
- chlorinated solvents in soil and groundwater: hard to remediate and risk for health and environment
- often caused by companies with little capital
- urban environment poses additional limiting conditions for research and remediation
- common problem in all European cities

How?
Develop an **integrated approach** for remediation of chlorinated solvent pollution in urban areas, encompassing not only **technical** aspects but also aspects of **communication**, **socio-economic** and **organizational** aspects
Integrated approach

- Economic aspects
- Risk perception & management
- Legal aspects
- Innovative Characterization techniques
- Integration of remediation and urban redevelopment
- Innovative Remediation techniques
Project steps to an Integrated Approach

Review and integration: starting with knowledge of experts from France, Germany, Netherlands and Flanders (Inventory, overview of bottlenecks, regional and transnational workshops and dissemination seminars)

Characterization & Remediation Techniques: research, exchange of knowledge and actual testing of innovative techniques at 7 pilot sites

Socio-economical aspects: impact of non technical issues on the solution of pollution problems. (risk perception, financing remediations, possibilities of integrated approach in European legislation,...)

http://www.youtube.com/user/citychlor
Pilot tests CityChlor

• OVAM
 1. Use of iron for source treatment
 2. Characterization techniques (Enissa MIP & RNS)
 3. Communication in remediation

• INERIS
 4. Characterization tools (Passive Samplers, …)

• Stuttgart
 5. Thermal remediation

• Utrecht:
 6. Area-scale monitoring
 7. ATES and remediation
1. Use of iron for source treatment

Degradation of VOCs is a slow and difficult process.

Iron can act as a catalyst.

In CityChlor we tested the injection of nano iron particles & the cheaper micro iron particles on a site of a former printer.

This technique was until now mostly tested in lab tests. On the field-tests are rare so very useful for remediation experts.
Demonstration and validation of an innovative method for the detection and characterisation of the source zone of pollution with VOCl, including sinking layers

2. Characterisation techniques

Selected techniques

ENISSA MIP = (MAVA) technique that allows measuring individual components (Quantitative as well as qualitative) until ca. 10 µg/l. With this technique a full characterisation of pollution (intervals of 30 cm) is possible and a large amount of data can be collected in short time.

Ribbon NAPL sampler = (URS) technique that can give precise information on the vertical spreading of pure product.

Investment is finished. Outputs:

- Demonstration during seminar on “Innovative techniques in investigation” (Kortrijk, 17/05/11)
- Detailed report on the investments (Dutch + English summary) + movies on You Tube
3. Communication & Risk Perception

1. Socio-psychological test to measure the impact of communication during remediation projects

- Literature Study and Survey done by University of Ghent
- Survey is done in November 2011: result: this pollution doesn’t cause any stress because the citizens felt well informed and had the feeling of self-controlling the risk (by not using groundwater)

2. Development of checklists and communication material to help the cities and experts

Inspired by PARCOMBO (Bodem+), C Factor (Utrecht), Communication at remediation projects (OVAM), COMRISK (INERIS), and based on the results of the sociological study done for CityChlor.
4. Characterization tools

Successive use of DPT, Passive samplers, groundwater sampling, soil sampling, soil air and indoor air sampling

- DPT: CPT/MIP/BAT sampling outside and inside buildings (movie)
- Groundwater characterization (Passive Samplers & Long term monitoring)
- Soil characterization (Soil and Soil Air Sampling + Indoor Air measurements)
Stuttgart-Feuerbach: Thermal remediation

- Pump & Treat since 1994
- CHC-Concentration since 1995

- **New remediation techniques?**
 - Overlapping large boreholes
 - TUBA: In-situ remediation by steam-injection and soil vapor extraction
 - THERIS: In-situ remediation by thermal enhanced soil vapor extraction (thermal wells as heat source)
6. Bio-process monitoring

- **Pilot site in Utrecht (NL)**

 Large scale groundwater pollution:
 - pollutions largely mixed
 - Area of circle (phase 1): 400 ha
 - appr. 60 million m3 polluted groundwater

 Total area (phase 1 & 2): 900 ha
 - appr. 125 million m3

 Sustainable soil energy:
 - ATES-systems: >7 million m3/year
 - > 6,000 kton CO$_2$-reduction/ year

Monitoring network groundwater: grid 250 - 250

Conceptual Site Model on www.citychlor.eu
7. ATES and Remediation

Pilot site in Utrecht (NL): Ates is installed

Facilitating: making activities in subsoil possible
Legal status: phased approach of partial remediations
Focus: VOC’s in the first aquifer (1e WVP), from 5 – 50 m bgs
Action values: for human risks & spreading
Prognosis: on flux & concentration levels

- forecast load reduction bio-washing VOC’s = 40%

Influence of ATES-wells (8 million m³ / year):
- mixing area = change of groundwater level > 0,25m
- mixing effect = geohydrological effect (sorption, dilution, etc)
Workshops & Demonstrations