

Tackling urban soil and groundwater contamination caused by chlorinated solvents

Veerle Labeeuw OVAM

22 October 2012

9 partners:

INTERREG IVB North West Europe (NWE)

The aim of this financial instrument of the European Union's Cohesion Policy is to

- stimulate transnational cooperation
- find innovative ways and tackle shared problems in the NWE region.
- touch the lives of citizens and thus contribute to a more cohesive EU society

The total research budget of CityChlor is 5.2 M. euro of which 50% is financed by Interreg IVB

www.nweurope.eu

Project's objectives: improve the quality and minimize the pollution of soil and groundwater

Problem?

- chlorinated solvents in soil and groundwater: hard to remediate and risk for health and environment
- often caused by companies with little capital
- urban environment poses additional limiting conditions for research and remediation
- common problem in all European cities

How?

Develop an integrated approach for remediation of chlorinated solvent pollution in urban areas, encompassing not only technical aspects but also aspects of communciation, socio-economic and organizational aspects

Integrated approach

Project steps to an Integrated Approach

Review and integration: starting with knowledge of experts from France, Germany, Netherlands and Flanders (Inventory, overview of bottlenecks, regional and transnational workshops and dissemination seminars

Characterization & Remediation Techniques:

research, exchange of knowledge and actual testing of innovative techniques at 7 pilot sites

http://www.youtube.com/user/citychlor

Socio-economical aspects: impact of non technical issues on the solution of pollution problems. (*risk* perception, financing remediations, possibilities of integrated approach in European legislation,...)

Pilot tests CityChlor

OVAM

- 1. Use of iron for source treatment
- 2. Charactarization techniques (Enissa MIP & RNS)
- 3. Communication in remediation

INERIS

4. Characterization tools (Passive Samplers, ...)

Stuttgart

5. Thermal remediation

Utrecht:

- 6. Area-scale monitoring
- 7. ATES and remediation

1. Use of iron for source treatment

Degradation of VOCI is a slow and difficult process

Iron can act as a catalyst

In CityChlor we tested the injection of nano iron particles & the cheaper micro iron particles on a site of a former printer.

This technique was until now mostly tested in labtest. On the field-tests are rare so very useful for remediation experts.

2. Charactarization techniques

Demonstration and validation of an innovative method for the detection and characterisation of the source zone of polluction with VOCI, including sinking layers

Selected techniques

ENISSA MIP = (MAVA) technique that allows meas

individual components (Quantitative as well as qualitative) until ca. 10 μ g/l. With this technique a full characterization of pollution (intervals of 30 cm) is possible and a large amount of data can be collected in short time.

give precise information on the vertical spreading of pure product.

Investment is finished. Outputs:

- Demonstration during seminar on "Innovative techniques in investigation" (Kortrijk, 17/05/11)
- Detailed report on the investments (Dutch + English summary) + movies on You Tube

Cition 3. Communication & Risk Perception

1. Socio-psychological test to measure the impact of

communication during remediation projects

- Literature Study and Survey done by University of Ghent
- Survey is done in November 2011: result: this pollution doesn't cause any stress because the citizens felt well informed and had the feeling of self-controlling the risk (by not using groundwater)

2. Development of checklists and communication material to help the cities and experts

Inspired by PARCOMBO (Bodem+), C Factor (Utrecht), Communication at remediation projects (OVAM),

COMRISK (INERIS), and based on the results of the sociological study done for CityChlor.

4. Characterization tools

Successive use of DPT, Passive samplers, groundwater sampling soil sampling, soil air and indoor air sampling

- DPT: CPT/MIP/BAT sampling outside and i buildings (movie)
- Groundwater characterization
 (Passive Samplers & Long term monitoring
- Soil characterization (Soil and Soil Air Sa + Indoor Air measurements)

5. Thermal remediation

Stuttgart-Feuerbach: Thermal remediation

- Pump & Treat since 1994
- CHC-Concentration since 1995

- New remediation techniques?
- Overlapping large boreholes
- TUBA: In-situ remediation by steam-injection and soil vapor extraction
- THERIS: In-situ remediation by thermal enhanced soil vapor extraction (thermal wells as heat source)

6. Bio-process monitoring

Pilot site in Utrecht (NI)

Large scale groundwater pollution:
- pollutions largely mixed
- Area of circle (phase 1): 400 ha

- → appr. 60 million m³ polluted groundwater

→ appr. 125 million m³

- Sustainable soil energy:
 ATES-systems: >7 million m³/year
 > 6.000 kton CO₂-reduction/ year

Monitoring network grondwater: grid 250 - 250

Conceptual Site Model on www.citychlor.eu

7. ATES and Remediation

Pilot site in Utrecht (NI): Ates is installed

Facilitating: making activities in subsoil possible

Legal status: phased approach of partial remediations

Focus: VOC's in the first aquifer (1e WVP), from 5 – 50 m bgs

Action values: for human risks & spreading Prognosis: on flux & concentration levels

☐ forecast load reduction bio-washing VOC's = 40%

Influence of ATES-wells (8 million m3 / year):

- mixing area = change of groundwater level > 0,25m
- mixing effect = geohydrological effect (sorption, dilution, etc)

City Workshops & Demonstrations

Final Conference 16-17 May 2013 Ghent

Veerle.labeeuw@ovam.be

www.CityChlor.eu

youtube

linkedIn

