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Talk outline

• Introduction
– Carbon storage and land-based options
– Efficacy of carbon storage in soil organic matter

• Biochar (the concept)
– Carbon sequestration
– Bio-energy versus “carbon negative” energy
– Definitions of biochar

• Net carbon benefits



‘Land based carbon storage’

Rationale for carbon storage strategies:
reducing use of energy will not happen soon or fast enough
to decrease atmospheric CO2

– and for storing carbon in the biosphere:
– capture undertaken by natural processes, so no 

“energy penalty” (c.f. flue gas capture)
– natural carbon flows large relative to fossil fuel flux, 

and a significant proportion already human-modified 
– auxiliary benefits



Biospheric carbon cycle

Carbon is the main constituent of 
organic material: 45 % of plant matter, 

60% of organic matter in soil
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Land-based carbon storage – plants

• Increasing ‘standing carbon’ (forests, plantation)
– trend forest cover is downward
– annual accrual (growth) slow and finite
– planted trees vulnerable to later fire or clearance



Land-based carbon storage – soil

– returning more crop residues, manure, 
compost, other organic material / waste

• depends on availability of organic resource 

– decreasing soil disturbance (reducing 
decomposition rate)

• balance of evidence suggests a small effect



Long term experiment at  Rothamsted Research

Soil quality driven by labile carbon

Photo: Chris Watts



Soil carbon storage – limitations

• Stock is only the balance between the input of 
organic matter to soil and its decomposition
– stored rather than sequestered so harder to account
– developing and maintaining elevated stock requires 

large ongoing increase in annual input of organic 
material (with, increasingly, other value)

– decomposition rate may increase with climate change 
making soil carbon stores vulnerable to ‘feedback’

• Only a small proportion of added organic matter 
much stabilised, accumulation rate diminishes
– inefficient use of organic resource after equilibration
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Soil carbon storage – limitations



• about 0.2 Mt C yr-1 in UK, or ~0.1 % of annual 
CO2 emissions

M
ax

im
um

 U
K

 s
oi

l c
ar

bo
n 

ac
cu

m
ul

at
io

n 
ra

te
 (M

tC
/ y

r) 4.0
3.5

2.5

1.5

0.5

3.0

2.0

1.0

Smith et al., 2000
Soil Use and Management

0.35 tC /ha/yr 
on 3 Mha

2% annual UK 
CO2 emissions 
from fossil fuel 

Even ‘unconstrained’ potential is small – UK case study

Soil carbon storage – limitations
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A “new” biospheric option - biochar

• Convert up to 1 GtC annual net primary 
productivity (NPP) into chemically stable forms
– organised conversion is a clean process where heat 

and combustible gases are captured and used

• Storage in soil
– matches diffuse feedstock and diffuse storage
– does not depend on physical stabilisation
– opportunity to generate feedstock through positive 

feedback (increasing harvestable NPP)

A natural analogue: the “black carbon cycle”
(natural fire and charcoal) processes >0.1 GtC / yr



• International definition (includes charcoal)
– pyrogenic carbon from biomass
– intended for application to soil

• Enhanced definition (analogy to charcoal)
– zero-oxygen conversion
– high rate of carbon conservation (e.g. >30%)
– dominant (chemical) configuration ‘aromatic’
– structured or amorphous (physically)
– capture of synthesis gases (H2,CH4,CO, etc.)

• as energy co-products
– active matching of characteristics to situation

Biochar definition
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Biochar strategy – attributes

• Proportion of current organic resource converted 
to stabilised form, providing certain functions 
typical of soil organic matter, but not diminished
– maintenance not dependent on maintenance of inputs
– incremental enhancement
– annual augmentation is optional or opportunistic
– no obvious limit to storage capacity
– secure w.r.t. future change in climate, land-use, etc.

• Can be deployed in conjunction with conventional 
strategies to build soil organic matter
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Scenario: diversion of 2 tC/yr (cereal straw) to biochar one year in four (returned to 
soil, 90% stable), and three years in four direct to the soil – assumes no interactions

Biochar-enhanced carbon storage



• Stability of biochar and efficiency of 
energy use determine net gain

• Can assume a ‘carbon stability factor’ that 
accounts for some short-term loss

• Sensitivity of strategy minimal for average 
stability exceeding 100 yr

• Extensive laboratory evidence for high 
stability of charcoal, millennial-scale in the 
field…

Stability of biochar carbon



• By analogy to charcoal in natural systems
– Assumptions on frequency of standing 

biomass, burn frequency, and conversion
– Mean residence time of 1300-2600 yrs

Stability of biochar carbon



Composite nature of biochar carbon
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Ondrej Masek, PhD thesis

• Less research on stability of components of carbon from pyrolysis rather than natural charcoal



• To concentrate (and stabilise) carbon, hydrogen 
and oxygen have to be released (and some 
trace elements in proportion)

• Gases from slow pyrolysis may also contain 
about 2/3 of initial carbon

• Burning gases from biomass pyrolysis 
constitutes bioenergy

• Gas capture prevents polluting emissions 
associated with traditional pyrolysis (charcoal)

• Technologies to retain more carbon during 
stabilisation may emerge

The energy angle



energy : CO2 ratios in biomass conversion
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Life cycle analysis – estimates for overall gain
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Hammond et al., forthcoming



Conclusions

• Biochar has the potential to sequester 
(rather than simply store) carbon into the 
biosphere

• Sequestration could be at the Gt scale 
using currently available feedstock, given 
suitable policy and economic instruments

• Pyrolysis offers bio-energy co-products 
with the potential to exceed the carbon 
gain (abatement) from combustion
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