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Synopsis 

The present deliverable concerns the last task of the DIGISOIL’s WP1. Possible and 
adapted processing or inversion techniques for geophysical data are studied.  

A state of the art on general theory related to inverse problem is first given. Then, for 
the 4 methods developed in DIGISOIL (GPR, EMI, Geoelectric and seismic), the 
problem is deeply described and solutions are proposed. 

Some examples of inverted data are shown to illustrate these solutions. 
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1. Introduction 

1.1. MAIN OBJECTIVES OF THIS STUDY 

This deliverable presents some elements for retrieving geophysical parameters from 
sensors measurements. 

In order to reach the physical frontiers of information retrieval from the different 
sensors, signal processing, when possible, is based on advanced mechanistic inverse 
modelling techniques. Efforts are therefore focus on improved signal understanding, 
forward modelling, and inversion using global optimization and regularization to 
estimate the soil geophysical parameters.  

Joint interpretation strategies, i.e., how to combine several inverted geophysical 
parameters into a more robust interpretation in terms of soil characteristics, will be 
further developed in WP2 dealing with data fusion. 

In the following sections we first present the different kinds of inversion strategies 
before to get more in details with applications to typical geophysical methods. 

1.2. MANAGING MEASUREMENTS AND PROCESSING PROTOCOLS  

The principle of inversion processes consists in simulating data from a mathematical 
model that uses a priori parameters with their associated uncertainties. These 
calculated data are then compared to measured ones by using a L2 norm. From this 
comparison, the cost – or likelihood – function. The problem consist in reducing the 
cost function by adjusting the parameters. For this purpose, several methods can be 
used: gradient method, optimisation methods, etc. 

As it will be mentioned in next sections, inverting correctly geophysical data require 
additional considerations for ensuring that the resulting models are constrained 
enough: 

• An efficient inverse algorithm may need to be applied on pre-processed data in 
order to make the observed data in good agreement with the mathematical 
model hypothesis; 

• If possible, uncertainties on observations need to be integrated in the process; 
these a priori information is an important input since it offers to algorithms a 
larger level of freedom for fitting observed and calculated data; 

• The a priori parameters set needs to be as close as possible to the real one, 
meaning that additional information coming from existing data have to be 
initially integrated to constrain parameters; 
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• The number of data used in the process have to be in proportion to the number 
of parameters to invert, otherwise the problem is underestimated and the risk 
of divergence increases; 

• The resulting parameters have to be considered with their a posteriori 
uncertainties for identifying unconstrained ones. 

In the next section, fundamentals of inverse problems are presented in a generic way. 
The last section is dedicated to describe inverse techniques that will be implemented in 
DIGISOIL for typical methods (seismics, GPR, geoelectric for example). For other 
methods, no inversion process is foreseen since measurements will be integrated 
directly in the fusion process leading to interpreted maps. 
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2. Review of inverse methods in geophysics 

2.1. LINEAR AND NON LINEAR INVERSE PROBLEM 

2.1.1. General overview 

The inversion of geophysical data is concerned with the problem of making inferences 
about physical systems from observed data. Since nearly all data are subject to some 
uncertainty, these inferences are usually statistical (Scales and Smith, 1996.). Further, 
since one can only record finitely many data and since physical systems are usually 
modelled by continuum equations no geophysical inverse problems are really uniquely 
solvable: if there is a single model that fits the data there will be infinity of them.  Our 
goal is then to characterize the set of models that fit the data and satisfy our prejudices 
as well as other information.  

To make these inferences quantitative one must answer three fundamental questions. 
How accurately are the data known? I.e., what does it mean to ``fit'' the data. How 
accurately can we model the response of the system? In other words, have we 
included all the physics in the model that contribute significantly to the data? Finally, 
what is known about the system independent of the data? This is called a priori 
information and is essential since for any sufficiently fine parameterization of a system 
there will be unreasonable models that fit the data too. 

Inverse theory is an exceedingly large topic and we cannot cover all aspects in depth. 
General references for geophysical inversion theory included the textbooks by 
Tarantola (1987), Menke(1989)  or Sclales and Smith (1996). In general, the inversion 
implies the minimization of an objective function representing the discrepancies 
between the data and the model. With such a strategy, both data and process 
knowledge information are inherently merged in a mechanistic way. 

The three conditions to ensure a proper estimation of the quantities of interest, 
according to Hadamard, are : existence, uniqueness and stability of the inverse 
solution. Provided that the model parameters are identifiable and enough information is 
contained in the data, which includes enough model sensitivity to the data, these three 
conditions are satisfied and the inverse problem is said to be well-posed. Yet, it is also 
essential that the model describes sufficiently well the physical process, and, 
furthermore, the minimization algorithm should be able to find the solution in a 
reasonable time. Uncertainties in the estimated parameters can be derived from the 
objective function topography. 

The mathematical model may simultaneously describe several types of data and 
several models may be integrated in such an inverse modelling framework. For 
instance, Lambot et al. (2006) constrained the inversion of an electromagnetic GPR 
model with a soil hydrodynamic model to simultaneously reconstruct vertical water 
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content profiles and identify the unsaturated soil hydraulic properties from time-lapse, 
off-ground GPR data. 

Integrated inverse modelling is part of the DIGISOIL strategy to infer the soil properties 
from the different sensors and the knowledge of the underlying geophysical and 
soil/hydrodynamic processes. A part of the information fusion process situates in the 
formulation of the objective function, for which several methods are available (Baysian, 
Pareto, etc.). 

2.1.2. Fundamentals of linearized inverse methods 

A geophysical experiment consists of an energy source, an earth model, and a 
response from the ground. The energy source can be natural as in the case for 
magnetic, or can be a man made device, such as a vibrator or weight drop used in 
seismic survey, or un electric current used in electrical studies. The earth model is 
characterized by 3D distribution of physical properties and the responses can be 
physical fields that are measured on surface or in boreholes.  The propagation energy 
through the earth depends upon the 3D distribution of one or more physical properties, 
i.e. each datum is sensitive to a property variation in the volume. Because each datum 
is sensitive to what is happening in the volume, it should not be expected that a data 
image can directly provide localized information about the subsurface geology. 
Geophysical inversion is required to extract that information from the data. 

Data from a geophysical experiment can be generically written in the form (Oldenburg 
and Li, 2005): 

jj
obs
jj nddmF +≡=][ , j=1,2…..N  Eq. 1 

where Fj is a forward modelling operator, m is the generic symbol for a physical 
propriety  distribution and the right end side represents the observed datum which 
consist of the true datum dj plus additive noise nj. The forward problem involves 
calculating the responses under the assumption that the source and the earth model 
are known. 

In a geophysical experiment we acquire N data (dobs), and some knowledge about their 
uncertainties. The inverse problem attempts to find the model m that produced the 
noisy observations. This process is much more difficult that forward modelling. Each 
geophysical datum depends upon a volumetric distribution of the physical property and 
information about the property is encoded in the data in a complex way. It is unrealistic 
to expect that we can determine a 3D physical property distribution uniquely when we 
have only a few data: the inverse problem is considered as ill-conditioned or unstable. 
If we can find one solution that “acceptably” fits the data, there are infinitely many 
others that will fit just as well. Selection of a single will required additional information.  

This is, arbitrarily small errors in the data can generate arbitrary large errors in the 
recovered model. The ambiguity could be reduced either by imposing constraints, 
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finding good initial models (Xia et al., 1999), or including an extra independent data set 
in inversion procedure ( Lai et al., 2005, Del Moro and Pipan 2007). 

Data from most geophysical methods are intrinsically nonlinear functional of the 
physical properties. The issues for solving the nonlinear inverse problem are 
fundamentally the same as those in the linear problem. We specify a misfit function Фd 
and a model norm Фm and we will minimize: 

Ф(m)= Фd - β Фm   Eq. 2 

where β is a constant and is generally known as the regularization parameter. The 
misfit function Фd is: 

2
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= ε
φ  (3)   Eq. 3 

where Wd=diag(1/ ε) and εj is standard deviation errors of the j’th datum. 

We are able to minimize equation (Eq.2) in one step only if Ф(m) is a quadratic 
function. The optimisation problem becomes nonlinear when either Фm or Фd  is 
nonquadratic. That can occur because the forward mapping for the data is nonlinear or 
because the model objective function is nonquadratic.  A nonlinear problem “became 
linear” by fixing β so that the objective functions is quadratic (Oldenburg and Li, 2005). 
This leads to a system of equation that is repeatedly solved with different βs, and in 
finally an acceptable β is selected.  

Hereafter, we shall outline some general principles of Gauss-Newton procedure that 
are widely used in geophysical methods (Oldenburg and Li 2005). 

Let  

  
22

(])[()()( refm
obs

dmd mmWmFdWmm −+−=+= ββφφφ   Eq. 4 

with β fixed. Our goal is to find m that minimizes this functional. With nonlinear 
dependences, the minimization must proceed iteratively so we let m(n)  be the current 
model and δm be a perturbation.  Expanding equation (Eq.4) in a Taylor series yields  

 

.........
2

1
))(()( +++=+ mHTmmTgnmmnm δδδφδφ  Eq. 5 

Where g=∆Φ (m) is the gradient and H=∆∆Φ (m) with components 
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These values are evaluated at the current model m(n) . We want to find a perturbation 
such that equation (Eq.5) is minimized. Neglecting the higher order terms and taking 
the derivative of equation (Eq.5) with respect δm, and set the resultant to zero, yields 
the Newton’s equation for the perturbation: 

gmH −=δ   Eq. 7 

The solution is updated by setting m(n+1) = m(n) + δm and the process is continued until 
convergence (gradient close to zero).  

To evaluate the Newton equation (Eq.7) we need to compute the gradient and Hessian. 
The gradient of equation (Eq.4) is: 

)()][()( refm
T

m
obs

d
T

d
T mmWWdmFWWJmg −+−= β   Eq. 8 

Where J(m)=∂F/αm is the sensitivity matrix. 

The Hessian has the form: 

   m
T

md
T

d
T WWJWWJH β+=    Eq. 9 

The matrix H to be inverted is an MxM positive definite symmetric matrix so its inverse 
exists.  The resultant equation to be solved is: 
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This is Gauss-Newton equation. 

The local quadratic representation of the true quadratic surface described by equation 
(Eq.5) is given by: 

mHmmgmmf TT δδδφδ
2

1
)())( ++=   Eq. 11 

Minimizing this with respect to δm yields the Hδm = -g . If f(δm) is an adequate 
approximation to Φ(m(n) + δm, then the perturbation  will be good  and the updated can 
be m(n+1) =m(n) + δm. However, if f(δm) is a poor approximation, than the recovered 
δm may have a wrong direction and/or be the wrong size. There are two general 
strategies for dealing with such situations.  The Hessian is modified and the size of a 
potential step is restricted so that f is a good approximation. Than δm has both the 
correct direction and step length, and it can be added to the existing model to generate 
the updated solution. An other strategy is to accept that δm has the right direction but 
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its magnitude is incorrect. The magnitude being too large so the updated model is 
given by m(n+1) =m(n) + µδm  with  0 <µ<1, damping factor that reduce the step length. 
The combination of using the Gauss-Newton equation and step-length control produce 
the damped Gauss-Newton methodology.  

Any of the above strategies for computing a step, can be continued until convergence 
has been achieved, that is until the gradient is sufficiently close to zero and the 
objective function don’t decreases. Marquardt (1963) described an elegant method for 
varying smoothly between the extremes of the inverse Hessian method and steepest 
decent method. This method (called Marquardt method) works very well in practice and 
has become the standard of nonlinear least-squares problems. More implementation 
detail can be found in Numerical Recipes in C (Press et. al. 1992) 

2.2. OPTIMIZATION METHODS 

Optimization methods aim also to minimize the cost function by adjusting the model 
parameters but without using gradient-like techniques. Instead of that, the parameters 
are adjusted randomly or using systematically sampling to test the fit improvement. The 
three kinds of approaches presented below are the most used at this time. 

2.2.1. Monte-Carlo (MC) and simulated annealing (SA ) approaches 

Monte-Carlo methods are pure random search methods in which model parameters m 
are drawn uniformly and tested against data. In such inversion process, each model 
parameter is allowed to vary within a predefined search interval (mmin < m < mmax), 
determined a priori. A random number rn is drawn from a uniform distribution U[0,1] 
and then mapped into a model parameter so that: 

mnew = mmin + rn (mmax - mmin)  Eq. 12 

New random models are generated by random perturbations so that calculated data 
can be computed for each of them. These data are compared to observed ones, so 
that related models can be accepted or not depending on the values of the cost 
function. This method implies a great number of models to be tested, for a large 
sampling of the parameter models to be reached (Sen and Stoffa, 1995). 

In simulated annealing methods, a convergence process is searched using an iterative 
process in order to reduce the number of tested model parameters. Metropolis 
algorithm, for example, uses a Markov chain to generate new models and the decision 
to accept them or not are depending on a double criteria: if the cost function has been 
improved the new model is always accepted; if not,  the model is accepted with the 
following probability: 








 ∆−=
T

E
P exp  Eq. 13 
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Where ∆E refers to the increase of the cost function between two iterations, T is a 
quantity called “temperature” that is adjusted to ensure the convergence (Grandjean et 
al., 2000). 

2.2.2. Neural network 

Neural networks are a particularity of SA since a large number of neurons are 
generated and connected, each of them corresponding to a signal pondered by a 
weight. These resulting signals are evaluated according to an activation function. 

2.2.3. Genetic algorithms (GA) 

Unlike previous approaches, which are based on analogy with a physical annealing 
process, genetic algorithms are based on analogy with biological evolution. These 
methods work with a population of model parameters coded in some suitable form. The 
basic steps in GA are coding, selection, crossover and mutation. Each of these steps 
corresponds to possible evolution from a model to another, and is therefore well 
established. 

2.2.4.  Multilevel Coordinate Search (MCS) 
 
Inspired by a method by Jones et al. (1993), the multilevel coordinate search is a global 
optimization algorithm. It is guaranteed to converge if the function is continuous in the 
neighborhood of a global minimizer. By starting a local search from certain good points, 
an improved convergence result is obtained. MCS is an intermediate between 
stochastic (that guarantee to find a global optimum with a required accuracy) and 
heuristic (that find the global minimum only with high probability) optimization methods. 
An advantage compared to genetic algorithms, for instance, is that if the number of 
iterations tends to infinity, convergence can be ensured. 

2.3. REVIEW OF CLASSICAL – COMMERCIAL OR NON-COMMER CIAL – 
CODES FOR GEOPHYSICAL DATA INVERSION 

2.3.1. Geoelectric 

Geoelectric data are most of the time inverted with the Res2Dinv code (Loke, 1996). 
The RES2DINV program uses the smoothness-constrained least-squares method 
inversion technique (Sasaki 1992) to produce a 2D model of the subsurface from the 
apparent resistivity data. It is completely automatic and the user does not even have to 
supply a starting model. On a Pentium based microcomputer, the inversion of a single 
pseudosection is usually completed within minutes. It supports the Wenner (a,b,g), 
Schlumberger, pole-pole, pole-dipole, inline and equatorial dipole-dipole, gradient and 
non-conventional arrays. 

The program will automatically choose the optimum inversion parameters for a data 
set. However, the inversion parameters can be modified by the user. Three different 
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variations of the least-squares method are provided; a very fast quasi-Newton method, 
a slower but more accurate Gauss-Newton method, and a moderately fast and 
accurate hybrid technique. The smoothing filter can be adjusted to emphasize 
resistivity variations in the vertical or horizontal directions. It can also be optimized to 
produce models with smooth boundaries (for eg. chemical plumes), or with sharp 
boundaries (for eg. fracture zones). Resistivity information from borehole and other 
sources can also be included to constrain the inversion process. Three different 
techniques for topographic modeling (Loke 2000) are available in this program. 

2.3.2. GPR 
 
Generally, GPR signal analysis is performed using ray-tracing approximations and 
tomographic inversion. Several methodologies are generally adopted for determining 
wave propagation velocity and retrieve soil water content from GPR data (Huisman et 
al., 2003): 

� determination of the wave propagation time to a known reflecting interface 
using single-offset surface GPR; 

� detection of the velocity-dependent reflecting hyperbola of a buried object using 
single-offset surface GPR along a transect; 

� extraction of stacking velocity fields from multi-offset radar soundings at a fixed 
central location (common midpoint method, CMP); 

� determination of the ground-wave velocity for surface water content retrieval 
using multi- and single-offset surface GPR; 

� determination of the surface reflection coefficient using single-offset off-ground 
GPR; 

� determination of the two-dimensional (2-D) spatial distribution of water between 
boreholes using transmission tomography. 

 
These basic techniques can readily be implemented and are usually available in the 
softwares that are provided with the commercial GPR systems. Straight-ray 
tomography needs more complex procedures and codes are, for instance, provided by 
Giroux et al. (2007) with bh_tomo and Sandmeier (2006) (http://www.sandmeier-
geo.de/Reflex/gpr.htm) with ReflexW. 
 
Although these approaches are well established, they still suffer from major limitations 
originating from the strongly simplifying assumptions on which they rely with respect to 
electromagnetic wave propagation phenomena. As a result, a bias is introduced in the 
estimates due to limited GPR model adequacy and, moreover, only a part of the 
information contained in the radar data is used, generally the propagation time. 
 
Resorting to the physical basis of GPR wave propagation is necessary to estimate 
simultaneously both the depth dependent soil dielectric permittivity and electric 
conductivity. The relation between the subsurface constitutive parameters and the 
measured electromagnetic field is governed by Maxwell's equations. Reconstruction of 
the unknown constitutive parameters from the known field appeals to inverse modeling. 
Inverting electromagnetic data has been a major challenge in applied geophysics for 
many years. Successful inversion is challenging since it involves rigorous forward 
modeling of the 3-D GPR-subsurface system, which is furthermore computationally 
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very time-consuming (full-waveform inversion). Moreover, the inverse problem should 
satisfy elemental well-posedness conditions, which are related to the information 
content in the radar data. Full-waveform inversion procedures for GPR are, to the best 
of our knowledge, not commercially available and are subject to intensive research with 
2-D (e.g., Ernst et al., 2007) and 3-D (e.g., Lambot et al., 2004; Solimene et al., 2007) 
codes. 

2.3.3. EMI 
 
After appropriate calibration of the instrument (for the commercial sensors), EMI 
directly provides, without inversion, the soil electrical conductivity that is derived from 
the secondary magnetic field amplitude. Yet, inversion techniques exist to reconstruct 
vertical electrical conductivity profiles from measurements performed at several 
frequencies, with different transmitter-receiver offsets, with different heights of the 
antennas above the ground, or with different orientations of the coils (vertical or 
horizontal), which result in different sensitivities with depth and thereby provide the 
required information (e.g., Pérez-Flores et al., 2001; Haber et al., 2004; Sasaki and 
Meju, 2006). Yet, they are usually applied to scales larger than the one required for 
near surface studies. For digital soil mapping, we have to map large areas with high 
resolution both laterally and in depth. These conditions imply such amount of data that 
make 3D or even 2D inversion too time consuming, and then 1D methods, which are 
extremely fast (e.g., Huang and Won, 2000; Zhang and Liu, 2001; Farquharson et al., 
2003) could be more adequate to have a rapid evaluation of data. Recently, Moghadas 
et al. (2009) introduced a new 3D inversion procedure showing great promise for digital 
soil mapping using EMI, with high model adequacy and fast evaluation procedures. 

2.3.4. Seismic 

In the framework of the DIGISOIL project, seismic data will be processed to study 
surface waves dispersion (Rayleigh waves) and invert for the Shear-waves velocity 
variations with depth. The program used to perform such an inversion is based on 
Computer Programs for Seismology and is called SURF (Herrmann, 1987). 

From a general point of view, these programs focus on the understanding and 
interpretation of seismic wave propagation in the crust and upper mantle of the Earth. 
Synthetic seismograph code is provided for sources and receivers at arbitrary positions 
in the plane layered media. Programs are provided for determination of crustal 
structure through the inversion of surface-wave dispersion and teleseismic P-wave 
receiver functions. Inversion of broadband recordings of regional earthquakes for 
source depth, focal mechanism and seismic moment is also provided. 

In our future processing works, only the part dedicated to surface waves (surf package) 
will be used. 
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3. Adapted methodologies for DIGISOIL 

3.1. ELECTRICAL METHODS 

Electrical methods were initially developed in the context of mining or petroleum 
prospecting. We are here interested in the application of the electrical methods for the 
soil characterisation. In that context, electrical resistivity can be used in three ways: 

- on 1D profiles (vertical soundings), to locally estimate the succession of the different 
horizons. By repeating these soundings in an exhaustive way, one is able to map a 
field site ; 

- on 2D profiles, to characterise i) the evolution of the width of soil horizons on several 
meters or several hundreds of meters or ii) the soil bulk density or the soil structure, to 
see, for example, compacted clods or cracks; 

- on 3D arrays, mainly to analyse the short-distance evolution of the soil structure. 

Whatever the arrays (1D, 2D, 3D), the interpretation of data does not require specific 
tools that could not be used in other contexts than the description of soil horizons or 
soil structure. The constraints are not linked to the inversion tool, but to the acquisition 
of data: due to the very short inter-electrode spacing (from 1 m to 10 cm, sometimes 
even 3 cm), we have to take care of i) the distance between the electrodes, so that the 
interpretation of data by the model is not erroneous, ii) the hollow of the electrodes in 
the soil, so that the electrodes can be considered as punctual and so that the inverse 
model can be run properly iii) the soil surface roughness, so that the digital elevation 
model in the inverse model is correct ,and iv) the electrode resistance during the 
measurements. If all these points are taken into account, the inverse modelling can be 
run. 

As far as 1D profiles are concerned, the interpretation of data consists in a classical 
sounding inversion: one considers that the earth model is a succession of horizontal 
layers, each layer being characterised by its width and its electrical resistivity. The 
inversion can usually be constrained by the knowledge of the real width of each layer, 
obtained in an independent way by auger holes. In the case of soil mapping, we usually 
use the MuCEP device, that comprises three interelectrodes spacings (Panissod et al., 
1997) (see the description in Lambot et al., 2009). As a consequence, we can only 
interpret a very simple earth model. The inversion is done by using the QWIN1D 
software, that was developed at the University of Paris VI (France) and that uses the 
Levenberg-Marquadt optimisation algorithm (Cousin et al., 2009).  

As far as 2D profiles and 3D arrays are concerned, the interpretation is done by the 
commercial softwares Res2DInv and Res3DInv (Loke & Barker, 1999). In common 
conditions, the model is used with its default parameters. It is however often 
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recommended to integrate the digital elevation model and to constrain the model by the 
width of the horizons, when they are known. To know the soil structure, there are some 
cases where the inverse model has to be adapted: 

- in the case of albic structures, i.e. the presence of sub-vertical tongues in some 
degraded  horizons. This type of structures is very common in lots of horizons and we 
can improve the use of the inverse models Res2DInv and Res3DInv by activating some 
options, say choosing a damping factor so that the vertical flatness filter is the double 
of the horizontal flatness filter  

- in the case of the detection of cracks, the contrast of resistivity between the soil and 
the cracks are so large that the Res2DInv or Res3DInv softwares are not well adapted. 
A new inversion model based on the method of moments is currently being developed 
(Tabbagh et al., 2007) It can be now run in the direct way and permits to calculate the 
initial position, the width and the depth of several different cracks. It has to be improved 
to be run in the inverse way. 

3.2. GPR – EMI 

3.2.1. Electromagnetic GPR and EMI forward modeling  : a united method 

For both GPR and EMI, the antenna-subsurface system is modelled using a system 
complex, linear transfer functions, with the assumption that the distribution of the 
backscattered electromagnetic field measured by the antenna does not depend on the 
air and subsurface layers, i.e., only the amplitude and phase of the field change (local 
plane wave approximation over the antenna aperture). This key simplification holds 
when the antenna is sufficiently far above a multilayered medium, as it is the case for 
our off-ground, zero-offset GPR and EMI systems. The transfer function model, 
expressed in the frequency domain, is given by (Lambot et al., 2004): 
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where Sii(ω) is the quantity measured by the Vector Network Analyzer (i.e., S11(ω) and 
S21(ω) for the monostatic GPR and bistatic EMI systems, respectively); b(ω) and a(ω) 
are, respectively, the backscattered and incident waves at the VNA reference 
calibration planes; Hi(ω), Ht(ω), Hr(ω) and Hf(ω) are the characteristic antenna transfer 
functions accounting for the antenna propagation effects and antenna-soil interactions; 

↑
**G  is the transfer Green’s function of the air-subsurface system modelled as a 3-D 

multilayered medium. It is worth noting that Hi(ω) and Hf(ω) play the role of global 
reflectances, whereas H(ω) = Ht(ω)Hr(ω) represents global transmitting and receiving 
transmittances. 

The characteristic antenna transfer functions can be determined by solving a system of 
equations for different model configurations. To this end, we use well defined model 
configurations, i.e., with the antenna situated at n different heights above a perfect 
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electrical conductor (copper sheet), so that the Green’s functions ↑
**G  can readily be 

computed and the corresponding S11(ω) or S21(ω) can be measured in a standard way. 
The system of equations (Eq.14) should be overdetermined (n > 3) to ensure a well-
defined and accurate solution (the equations are not fully independent for the whole 
frequency range, depending on the measurement heights). Function Hi(ω) can also be 
determined in an independent way, by performing measurements in free space 

conditions for which 0** =↑G . In that case, Hi(ω) is directly measured.  

Assuming the soil surface to be located in the far field region of the antenna, the zero-
offset GPR and EMI antennas reduce to a point source and receiver (point S = (0,0,0) 

in Figure 1). For GPR, the Green’s function, ↑
xxG , is defined as the backscattered x-

directed electric field (upward component) at the antenna phase centre for a unit x-
directed electric source situated also at the antenna phase centre. Regarding EMI, for 
the adopted horizontal mode of operation, the source can be described as a vertical 

magnetic dipole and the Green’s function ↑
zzG  is defined as the z-directed component of 

the backscattered magnetic field for a unit-strength z-directed magnetic source. The 
point source and receiver is assumed to be located above a 3-D, horizontally 
multilayered medium, as depicted in Figure 1. The medium consists of N layers 
separated by N − 1 planar interfaces parallel to the x-y plane of a right-handed 
Cartesian coordinate system. The medium of the nth layer is homogeneous and 
characterized by magnetic permeability µn, dielectric permittivity εn, electrical 
conductivity σn, and thickness hn.  

 

Figure 1 : Three-dimensional N-layered medium with a point source and receiver S. Each layer 
is characterized by the dielectric permittivity ε, electrical conductivity σ, and thickness h. 

For GPR and EMI, the spatial Green’s functions at the source point are respectively 
found to be: 
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where subscripts denote layer indexes, kρ is the spectral domain counterpart of the 
source-receiver distance, RTE and RTM are, respectively, the transverse magnetic (TM) 
and the transverse electric (TE) global reflexion coefficients accounting for all reflexions 
and multiples from inferior interfaces, ζ1 = jωµ1, Γ is the vertical wavenumber defined as 
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 with c being the speed of light in free space. 

The global reflection coefficients are determined recursively starting from the lower 
interface following the procedure presented in Slob et al. (2002). The infinite integrals 
(Eq.15) and (Eq.16) are evaluated by deforming the integration path in the complex kρ 
plane such that singularities (poles and branch points) are avoided and oscillations are 
minimized for proper and fast integration, respectively (Lambot et al., 2007). 

Both GPR and EMI models were successfully validated in laboratory conditions. Figure 
2 represents the measured and modelled GPR Green’s functions for wave propagation 
in a two-layered sand. Figure 3 shows the measured and modelled EMI Green’s 
functions for measurements at different heights above a copper sheet. For EMI, we 
observe that the model only agrees well at the loop antenna resonant frequency and 
when the loop is not too far from the copper sheet. As expected, elsewhere the signal-
to-noise ratio is poor, resulting in larger estimation errors. In addition, when the loop 
antenna is relatively close to the copper sheet, the model fails to describe properly the 
data, as indeed the hypotheses behind the model do not hold anymore. 

 

 

Figure 2. Measured and modelled GPR Green’s functions for wave propagation in a two-layered 
sand. (a) Frequency domain. (b) Time domain. (Lambot et al., 2004). 
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Figure 3. Measured (blue curves) and modelled (red curves) EMI Green’s functions for 
measurements at different heights above a copper sheet. (Moghadas et al., 2009). 

3.2.2. Model inversion 

The soil hydrogeophysical parameters are retrieved from the GPR and EMI data by 
inversion of the electromagnetic model described above, resulting in a nonlinear 
optimization problem. In this respect, parameter vector b = [εn, σn, hn] (n = 1, …,N) is 
determined from the minimization of an objective function φ (b). In the particular case 
where no prior information on the parameters is taken into account and assuming 
observation errors to be normally distributed, the maximum likelihood theory reduces to 
the classical least squares problem. The objective function expressed in terms of 
Green’s functions (antenna effects are filtered out from the raw data) is thereby defined 
as follows: 

φ (b) = (G *
**

↑ - G ↑
** )T C-1 (G *

**
↑ - G ↑

** ) Eq. 17 

where G *
**

↑ = G *
**

↑ (ω) and G ↑
** = G↑

** (ω, b) are, respectively, the observed and modelled 
Green’s functions, and C is the measurement error covariance matrix. As the objective 
function has inherently a nonlinear topography, the minimization is carried out using the 
global multilevel coordinate search (GMCS) algorithm combined sequentially with the 
classical Nelder-Mead simplex algorithm (NMS) (Lambot et al., 2002). 

Although GPR and EMI presents different sensitivities with respect to the soil 
electromagnetic properties and their spatial distribution (due to the different operating 
frequencies), both depend on the same electromagnetic quantities. It is therefore 
proposed to jointly invert the GPR and EMI data so that both inverse problems 
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regularize each other. Several data fusion techniques exist and are investigated within 
the DIGISOIL research activities (Lambot et al., 2009). Finally, particular inversion 
strategies can be designed depending on the particular application. For instance, 
surface or shallow soil water content can readily be obtained by performing GPR signal 
inversion in the time domain, by focusing on the surface reflection only (Lambot et al., 
2006). In that case, the unknowns reduce to the antenna height above the soil and the 
soil surface dielectric permittivity. The corresponding objective function has a simple 
topography and can be minimized using traditional local optimization approaches, such 
as the Levenberg-Marquardt algorithm. Confidence intervals are also provided on the 
estimates to quantify uncertainty. This procedure has been used to map in real-time 
surface water content in the field (Figure 4). 

 

Figure 4. (a) Off-ground GPR system used for real-time mapping of the soil properties. (b) GPR-
derived map of soil surface water content over a field of about 16ha, including more than 3000 

measurements. 

3.3. SEISMIC METHODS 

The surface wave method was developed in response to needs in geotechnical 
engineering and S wave reflexion seismology for a non-invasive technique for 
estimating the in situ S wave velocity of the near surface materials. 

3.3.1. Pre-processing operations 

Conventional implementation of the method involves the recording of Rayleigh waves 
on vertical component receivers, using the Rayleigh wave data to estimate the phase 
velocity dispersion curve, and then applying the method of geophysical inversion to the 
dispersion curve to obtain the S wave velocity as a function of depth. 

It is very important to recognize that the above steps are unconnected and their 
interaction must be adequately accounted for during the whole interpretation process. 
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Several approaches can be used to process field data in order to get the experimental 
dispersion curve. The phase velocity can be evaluated on the basis of the phase 
difference between a couple of receivers or from the simultaneous processing of 
several trace. Here we use, a transform based method, based on transformation of 
experimental data from time offset domain to intercept time ray parameter (McMechan 
and Yeldin 1981; Moktar et al. 1988): 
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where A(x i, f) is the amplitude spectrum of the trace i at distance xi, N is the number 
of traces in the shot gather, and C(f) is the amplitude spectrum of the first trace. The 
dispersion curve is directly obtained by picking the maximal values of the modulus of 
U (ν,f). This curve is used to determine the shear wave velocity via inversion process.  

3.3.2. Strategy for inversion 

A stack of L horizontal layer over a half space is the most common discrete 
parameterization for inversion of surface wave dispersion curve. Each layer is assumed 
to be homogeneous and isotropic linearly elastic medium. The parameters for layer j 
are typically chosen to be the thickness h j, S wave velocity Vs j, P wave velocity Vp j and 
density ρj. A parameter vector p with M=4(L+1) parameters is used to represent the 
complete set of all parameters (Figure 5). 

 

Figure 5 : Subsurface model commonly used for surface wave inversion 

The observed data consist of N>M phase velocities c(f i) at a given set of frequencies 
f i 
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c= [c(f1),c(f2),c(f3)………….c[fn])  Eq. 19 

The data are to be compared with N theoretical phase velocities ct(fi) computed for the 
same mode, and the frequencies fi. 

ct=[c(f1,p),c(f2,p),c(f3,p)………….c[fn,p])  Eq. 20 

where trial values are used for the elements of the parameter vector p.  

Here, the forward problem is the computation of theoretical phase velocities for layered 
elastic subsurface. It is typically a process of finding the roots of a dispersion equation 
which represents the constraints imposed on surface wave propagation in the layered 
model.  Numerous specific methods exist for computing theoretical dispersion curve for 
a layered medium. We use the Thomson-Haskell matrix method that is a special case   
of the more general formulation of elastic wave propagation in a vertically 
heterogeneous medium (Herrmann, 1987).   

Given a discrete parameterisation and the solution to the forward problem, the 
inversion is carried out by searching parameter space for one parameter vector pa that 
minimises an objective function The most basic objective function Ф(p) is the 
cumulative squared discrepancy between the observed and theoretical data 

[ ][ ]Ttt ccccp −−=)(φ   Eq. 21 

where T indicates the transpose. The search for pa may proceed iteratively through a 
limited portion of parameter space from an initial guess p0, or it may be a global search 
which is conducted over the entire parameter space.  

Regardless of the search strategy, inversion of surface wave data suffers from non 
uniqueness. More than one parameter vector can be regarded as acceptably 
minimizing the objective function. Non uniqueness may be addressed by adding a priori 
information and by adding a reasonable global constraint to the range of S wave 
velocities. It is common to fix the values of P wave velocity and density during inversion 
because the inversion is relatively less sensitive to these parameters (Bitri et al., 1998, 
Xia et al. 1999). 

The inversion of surface wave for near surface properties has undergone significant 
development in recent years that has greatly enhanced its capabilities (Xia et. al., 
1999, Lai et al. 2005, Del Moro and Pipan, 2007). 

The recent developments carried out in BRGM allow this technique to be carried out 
along linear structures and for mapping natural hazards such as basement topography, 
soil stiffness, etc. Important efforts were deployed, particularly for the source signal 
generation and for the sensor line manipulation. To increase the speed and efficiency 
of surface wave data recording and thereby keep acquisition costs down, a new type of 
multichannel seismic cable has been designed and manufactured. It consists of 24 
takeouts at fixed 0.5m intervals. Each takeout is attached to a single 10Hz vertical 
geophone. The seismic cable is towed behind a vehicle. A 24-channel Geometrics 
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Geode seismograph was used to record impact from a 1-kg hammer. Each 24-trace 
shot gather was analysed with SIRayD (Grandjean and Bitri, 2006), facilitating the use 
of surface wave with continuous profiling techniques. For each shot, dispersion curve 
was individually inverted into a depth versus shear-wave velocity profile. The linearized 
iterative least-squares technique used here is adapted from Hermman (1987). A 2D 
contour plot of the shear-wave velocity field was produced by gathering all the velocity 
profiles into sequential order, according to half shot station. 

3.3.3. Proposed solution: methodology and code 

The SASW method allows to obtain a velocity model at a given point because of the 
dispersive character of surface waves. The dispersion diagram reveals the 
dependence of phase velocity with frequency. To obtain the dispersion diagram, data 
are first recorded by seismic receivers ((x, t) domain) and transformed in the (x, ω) 
domain by a fast Fourier transform (FFT). A second transformation is performed to 
represent data in the (p, ω) domain where p is the ray parameter (McMechan and 
Yedlin, 1981; Mokhtar et al, 1988). The spectrum of the trace i is: 

A( nx , ω) )(ωφije  Eq. 22 
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Where p is fixed and C(ω) is the spectrum of the first trace. 

The maximum of the obtained energy (|U(p,ω)| max) for each value of the ray 
parameter is associated to a frequency and then, the dispersion curve is obtained. 
More than one propagation mode (m) can constitute the dispersion diagram. 

After this stage, the inversion process of dispersion curves aims to find the vertical S-
waves velocity model. The observed real dispersion curve, compared to synthetic 
curves computed from an a priori velocity model, generate phase velocity residues. 
The initial model is described by 4 parameters: layer thickness, density and P/S waves 
velocity. The model of S-waves velocity and layers thicknesses can be obtained by 
inversion of dispersion curves which mainly depends on these 2 parameters. 
Consequently, it is not necessary to estimate the P-waves velocity model and density 
of layers with accuracy. In our processing sequence, parameters of the initial model are 
thus calculated using the phase velocity values. For an elastic media with Poisson 
coefficient of 0.38, following relations are used: 

Vs = Vph*1.1 

Vp = 2.4 *Vs  

Rho = 2.5 – 0.0002*(4000 – Vp) 
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Concerning the penetration depth of surface waves, the following empirical relation 
found in literature is used: 

Z= 0.53 Vph/f  Eq. 24 

Where f is the frequency of surface waves. 

A linearized inversion method is used then to obtain the S-waves velocity model and 
layers thicknesses (Figure 6). For each iteration in the inversion process, the algorithm 
tends to fit a computed dispersion curve to observed real data. 

 

Figure 6 : From acquisition to inversion of surface wave. 

To facilitate and make shorter the time required for processing of all seismic 
measurements, an automatic picking code is proposed (Figure 7). The algorithm finds 
the maximum of the dispersion diagram for each frequency in the chosen domain to 
define a global shape of the dispersion curve. Those are collected in a M by N matrix 
where M defines the number of samples from the frequency discretisation and N the 
number of seismic shots and represented as a surface. Such representation allows the 
analysis of lateral variability of surface waves dispersion along seismic sections. 
Different tools of image processing and/or polynomial interpolation are available for 
adjusting curves to the inversion input criteria. 

Dispersion diagram S-waves Velocity model Seismogram 
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Figure 7 : Automatic extraction of dispersion curves and shape processing. 

The output of the proposed solution for seismic data processing is a vertical S-waves 
velocity model at one point. For DSM, measurements are performed along a regular 
grid defined over the studied zone (Figure 8). Soil properties (density, thickness, 
velocity etc.) deducted from geophysical parameters (Vs), defined at each point of the 
grid, are then interpolated by kriging technique to generate a map and deliver a spatial 
investigation of the properties variability. 

 

 

Figure 8 : Spatial covering of a studied area (left) and associated soil property map (right). 
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4. Conclusions 

This deliverable presents some elements for retrieving geophysical parameters from 
sensors measurements. In order to reach the physical frontiers of information retrieval 
from the different sensors, signal processing, when possible, is descried. It is mainly 
based on advanced mechanistic inverse modelling techniques. Efforts are focus on the 
presentation of improved signal understanding, forward modelling, and inversion using 
global optimization and regularization to estimate the soil geophysical parameters.  

A preliminary section is dedicated to give an overview of the fundamentals of inversion 
/ optimization processes used in geophysics. In a second part, specificities of 
algorithms developed or adapted in the framework of the DIGISOIL project are 
described particularly for GPR, EMI, Geoelectric and seismic methods. Some 
examples of application are also shown. 
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