Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

Panagos Panos1, Cristiano Ballabio1, Pasqualle Borrelli1, Katrin Meusburger2, Christine Alewell2

1European Commision – Joint Research Centre
2University of Basel, Environmental Geosciences
Soil Threats

- Sealing
- Decline of Soil Organic Matter
- Soil Biodiversity loss
- Erosion
- Salinization
- Compaction
- Contamination
- Landslides

Policy: Soil Thematic Strategy
RUSLE2015: New soil erosion model

- LUCAS Soil
- European Soil Database
- LUCAS Earth Observation
- Rainfall Erosivity Database (REDES)
- CORINE Land Cover
- Copernicus Remote Sensing
- Digital Elevation Model
- Good Agricultural Environmental Conditions (GAEC)
- LUCAS Earth Observation

Structures
- Sand
- Silt
- Clay
- Organic Carbon
- Permeability
- Coarse Fragments

K-factor

R-factor

Rainfall Erosivity

Soil Erodibility (with stoniness)

Cover-Management

Slope Length & Steepness

Support Practices

C-factor
- Non-arable
- Arable

LS-factor

Contour Farming
- Stone Walls
- Grass Margins

Objective: Why a European Rainfall Erosivity dataset?

- **Important factor for Soil erosion modelling:** Rainfall erosivity (R-factor) is one of the 5 factors for estimating soil erosion using (R)USLE model.

- Previous attempts of Rainfall Erosivity maps (at European scale) were not convincing neither the scientific community nor policy makers.

- Many local/regional studies based on functions plus low temporal resolution rainfall data.

- **Few studies estimate** rainfall erosivity based on high temporal resolution rainfall data (5-min, 10-min, 15-min, 30-min, 60-min)

- **Other applications:** a) Landslide risk assessment; b) flood risk forecasting; c) Post-fire conservation measures; d) agricultural management and design of crop rotation scenarios and e) Ecosystem services f) Trends and threats of climate change
Rainfall erosivity (R-factor) is the kinetic energy of rainfall (MJ mm ha\(^{-1}\) h\(^{-1}\) y\(^{-1}\))

- Combines the influence of rainfall duration, magnitude, frequency and intensity

- Time-consuming and requested laborious pre-processing (Mar 2013 – May 2014)

- Participatory approach (with countries). High temporal resolution data from:
 - Meteorological Services (or environmental institutes): Royal Netherlands Meteorological Institute, Meteo France, Deutscher Wetterdienst – DWD (Germany), Flemish Environmental Agency and the Service Public de Wallonie (Belgium), Estonian Environment Agency, Swedish Meteorological Service (SMHI), …
 - Meteorologists from Cyprus, Finland, Croatia, Hungary and Romania
 - Scientists who have developed research activities (in Rainfall erosivity) in their countries
 - Research project databases: Hydroskopio (Greece), Sistema National de Recursos Hidricos (Portugal), NERC, British
 - ‘Grey’ literature and searches with national language terms: Slovakia, Poland, Lithuania

- Conditions set for the data collection exercise
 - Continuous records for at least 10 years
 - Preference was given to datasets that cover the last decade.
 - Data of up to 60 minutes resolution were included
Data collection 2013-2014

Overview of the precipitation data collected to estimate the R-factor.

<table>
<thead>
<tr>
<th>Country</th>
<th>No. of stations</th>
<th>(Main) period covered</th>
<th>Years per station (average)</th>
<th>(Main) temporal resolution: 5 min, 10 min, 15 min, 30 min, 60 min</th>
<th>Source of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>31</td>
<td>1995–2010</td>
<td>12 stations: 10 min, 19 stations: 15 min</td>
<td>Hydrographic offices of Upper Austria, Lower Austria, Burgenland, Styria, Salzburg</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>20</td>
<td>2004–2013</td>
<td>Flanders (20 stations): 30 min, Wallonia (29 stations): 60 min</td>
<td>Flemish Environmental Agency (VMM), Service Public de Wallonie</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>84</td>
<td>1951–1976</td>
<td>30 min</td>
<td>Rousseva et al. (2010)</td>
</tr>
<tr>
<td>CY</td>
<td>Cyprus</td>
<td>35</td>
<td>1974–2013</td>
<td>30 min</td>
<td>Cyprus Department of Meteorology</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>32</td>
<td>1961–1999</td>
<td>30 min</td>
<td>Research Institute for Soil and Water Conservation (Czech Republic)</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>71</td>
<td>1988–2010</td>
<td>10 min</td>
<td>Meusburger et al. (2012)</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>148</td>
<td>1996–2013</td>
<td>60 min</td>
<td>Deutscher Wetterdienst (DWD)</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>30</td>
<td>1988–2012</td>
<td>60 min</td>
<td>Danish Meteorological Institute (DMI), Aarhus University</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>20</td>
<td>2007–2013</td>
<td>60 min</td>
<td>Estonian Environment Agency</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>113</td>
<td>2002–2013</td>
<td>14 stations: 10 min, 81 stations: 15 min, 18 stations: 30 min</td>
<td>Regional water agencies</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>64</td>
<td>2007–2013</td>
<td>60 min</td>
<td>Finnish Climate Service Centre (FMI)</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>60</td>
<td>2004–2013</td>
<td>60 min</td>
<td>Météo-France DP/SERV/FDP</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>80</td>
<td>1974–1997</td>
<td>30 min</td>
<td>Hydroskopio</td>
</tr>
<tr>
<td>HR</td>
<td>Croatia</td>
<td>42</td>
<td>1961–2012</td>
<td>10 min</td>
<td>Croatian Meteo & Hydrological Service</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>30</td>
<td>1998–2013</td>
<td>10 min</td>
<td>Hungarian Meteorological Service</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>13</td>
<td>1950–2010</td>
<td>60 min</td>
<td>Met Éireann — The Irish National Meteorological Service</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td>251</td>
<td>2002–2011</td>
<td>30 min</td>
<td>Regional meteorological services, Regional agencies for environmental protection (ARPA)</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>16</td>
<td>2000–2013</td>
<td>60 min</td>
<td>Agrarmeteorologisches Messnetz</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td>4</td>
<td>2007–2013</td>
<td>60 min</td>
<td>Latvian Environment, Geology and Meteorology Centre</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>32</td>
<td>1981–2010</td>
<td>60 min</td>
<td>Royal Netherlands Meteorological Institute</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>9</td>
<td>1961–1988</td>
<td>30 min</td>
<td>Banasik et al. (2001)</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>41</td>
<td>2001–2012</td>
<td>60 min</td>
<td>Agência Portuguesa do Ambiente</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>60</td>
<td>2006–2013</td>
<td>10 min</td>
<td>Meteorological Administration</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>73</td>
<td>1996–2013</td>
<td>60 min</td>
<td>Swedish Meteorological and Hydrological Institute (SMHI)</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>81</td>
<td>1971–1990</td>
<td>60 min</td>
<td>Mališek (1992)</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
<td>11</td>
<td>1993–2012</td>
<td>60 min</td>
<td>NERC & UK Environ. Change Network (ECN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2001–2013</td>
<td>60 min</td>
<td>British Atmospheric Data Centre (BADC)</td>
</tr>
</tbody>
</table>
REDES: Rainfall Erosivity Database at European Scale

- **1,541** Precipitation stations with detailed rainfall intensity; **1675 Precipitation Stations** in 2015 update (all countries)
- **Calibration requested:** 5 min, 10-min, 15 min, 60 min.
- **Temporal Resolution:** 30-Minutes
- **Time series:** 7 – 56 Years (Mean: 17.1yr; 75% of time series in 2000-2010)
- **Data:** 29,000 years of High Temporal resolution rainfall records (GB of data)
- **Average density:** 1 station per 50km x 50km
- **Stations distribution:** 6.5% of the REDES stations in > 1,000m a.s.l
Geo-statistical Model

- **Regression approach**: R-factor correlates mostly with climatic data but not only...

- **Gaussian Process Regression (GPR)**: A non-linear regression approach

- **GPR can be performed over an arbitrary number of covariates, including terrain features and geographical coordinates** (while kriging is usually performed on two- or three-dimension geographical space)

Covariates:

- **Climatic data** (*Worldclim Database 1km, 1950-2000*):
 - Average monthly precipitation, average minimum & maximum monthly precipitation, average monthly temperature, precipitation of the wettest month, precipitation of the driest month precipitation seasonality (variation of precipitation over seasons).

- **Elevation**: *SRTM 90m*

- **Spatial position**: Latitude, Longitude
Why Gaussian Process Regression (GPR)?

• **Best performing model** in terms of cross validation among a series of candidate models
 - OLS, GLM, GAM....
 - Regression Kriging

• **Criteria** chosen for the selection of **best model**:
 - the minimization of the root-mean squared error and
 - the maximization of the R^2.

• **GPR model performance** was tested for both a fitting and a cross-validation dataset.

• **The cross-validation** is carried out by random sampling with 10% replacement of the original dataset used for validation.

• **Good performance** for both
 - the cross-validation dataset ($R^2 = 0.63$)
 - and the fitting dataset ($R^2 = 0.72$)
Rainfall Erosivity (R-factor)

- **Resolution:** 500m
- **Spatial coverage:** European Union (EU-28) plus Switzerland
- **Robust Geo-statistical** model
- **Mean:** 722 MJ mm ha\(^{-1}\) h\(^{-1}\) yr\(^{-1}\)
- Highest R-factor in Mediterranean & Alpine regions and lowest in Scandinavia
- Highest R-factor levels are in line with the 3 major regions (van Delden, 2001) with highest frequency of thunderstorms.

Panagos et al. 2015. Science of Total Environment
Erosivity density

- **R-factor not dependent** only from rainfall
- **High erosivity density** is observed in Italy, Slovenia and Spain (R-factor is 2-3 times higher than precipitation).
- Rain distribution is much smoother in northern parts of Europe (northern Germany, France, Netherlands)

![Erosivity Density: Ratio of R-factor to precipitation](image-url)
• The model had a **good prediction rate** with low standard errors in the majority of the study area.

• **High variability of climatic and terrain conditions** in an area of > 4.4 Million km2 resulted in a broad spectrum of rainfall erosivity.

• Scotland, north-western Sweden and northern Finland: Relatively **small number of precipitation stations**.

• Southern Alps and the Pyrenees: **high diversity of environmental features**.

Standard error of the estimates
Conversion factors due to different time resolutions

<table>
<thead>
<tr>
<th>Resolution of source data</th>
<th>Target resolution</th>
<th>Conversion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-min</td>
<td>30-min</td>
<td>0.7496</td>
</tr>
<tr>
<td>5-min</td>
<td>30-min</td>
<td>0.7984</td>
</tr>
<tr>
<td>10-min</td>
<td>30-min</td>
<td>0.8205</td>
</tr>
<tr>
<td>15-min</td>
<td>30-min</td>
<td>0.8716</td>
</tr>
<tr>
<td>60-min</td>
<td>30-min</td>
<td>1.5597</td>
</tr>
</tbody>
</table>

- Source data in different time resolutions: 1-min, 5-min, 10-min, 15-min, 30-min, 60-min
- Harmonization is requested: Common time resolution of 30-min
- Development of Monthly component in REDES: 19,000 Monthly values
- Conversion factors show small variability in winter and much higher in summer

Panagos et al. WATER. (2016)
Rainfall erosivity seasonality

- **Dynamic component** in soil loss by water erosion
- **Different intra-annual** R-factor patterns (July / January)
- **53% of the annual rainfall erosivity in Europe** is accounted in **4 months** period (June – September)
- **Northern and Central European** countries exhibit the largest R-factor values in summer
- **Southern European countries** exhibit the largest R-factor values during October to January

Panagos et al. WATER. (2016)
Erosivity & Climate Change

Fitting
- REDES, R2010
- 16 significant WorldClim 2010 grids
- Simulated Annealing
- 36 Baseline climate grids + 6 Bioclimatic grids (WorldClim 1950-2000)

Prediction
- IPCG General Circulation Models (GCM)
 - Model HadGEM2
 - Scenario RCP 4.5
 - 16 significant grids 2050
- GPR regression model
- R2050

- **Target:** 2050
- **Model:** HadGEM2
- **Scenario:** RCP 4.5
- **18% increase** compared to baseline

Panagos et al. In Review (2016)
Regional studies

Switzerland
Meusburger et al. 2012 HESS

Italy
Borrelli et al. 2016 Journal of Digital Earth

Greece
Panagos et al. 2016, CATENA
• Rainfall Erosivity Database at the European Scale (REDES)
• Rainfall Erosivity map of Europe
• Conversion factors between different time resolutions
• Monthly Rainfall Erosivity Database & Seasonal Maps
• National Studies: Switzerland (2012), Greece (2016), Italy (2016)
• 2050 R-factor predictions
• Reduce the intrinsic climate model uncertainty

Future Studies:
 • Larger spectrum of available Global and Regional Circulation Models (GRMs/RCMs) (11 combinations),
 • all three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5) and
 • the latest version of the bias-adjusted EURO-CORDEX simulations

• Global Rainfall Erosivity Database: following the same participatory approach as in Europe, we have on board 15 Contributors (+ REDES) and 10 studies from the literature.
Rainfall erosivity in Europe

Panos Panagos a,*, Cristiano Ballabio a, Pasquale Borrelli a, Katrin Meusburger b, Andreas Klik c, Svetla Rousseva d, Melita Perčec Tadić e, Silas Michaelides f, Michaela Hrabalíková g, Preben Olsen h, Juha Aalto i, Mónika Lakatos j, Anna Rymszewicz k, Alexandru Dumitrescu l, Santiago Beguerrá m, Christine Alewell b

a European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, 1-21027 Ispra, VA, Italy
b Environmental Geoceneses, University of Basel, Switzerland
c Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
d Institute of Soil Science, Agrotechnology and Plant Protection Sofia, Bulgaria
e Meteorological and Hydrological Service, Zagreb, Croatia
f Department of Meteorology, Nicosia, Cyprus
g Department of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
h Department of Agroecology,arhus University, Denmark
i Finnish Meteorological Institute, Finland
j Hungarian Meteorological Service, Budapest, Hungary
k UCD Dooge Centre for Water Resources Research, University College Dublin, Ireland
l National Meteorological Administration, Bucharest, Romania
m Estación Experimental de Aula Del-Conejo Superior de Investigaciones Científicas (EEADCSC), Zaragoza, Spain

Information and data:
European Soil Data Centre:

Panos.panagos@jrc.ec.europa.eu