Version: 3.0 Date: 20 January 2012

PEARL 4 - Parameterisation for the revised FOCUS Groundwater Scenarios

Summary of changes made since the official FOCUS Groundwater Scenarios Report (SANCO/321/2000 rev.2).

New in Version 3.0

The changes in this version compared with the original parameterisation document (version 2.0, July 2003) are about:

- 1. New soil profiles have been defined for Porto and Piacenza
- 2. New potential reference evaporation data have been calculated for five locations in southern Europe
- 3. Irrigation is included in the Porto scenarios
- 4. The irrigation schedule for each crop-location combination has been improved because old procedure led to irrigation outside growing season
- 5. The rooting depth is limited to 1 m to be consistent with evaluation of leaching concentrations at 1 m depth
- 6. The crop evapotranspiration factors have been revised for all crops.

All changes are consistent with the FOCUS Groundwater report (FOCUS, 2009).

1 Summary

PEARL (Pesticide Emission Assessment at Regional and Local scales) is a consensus model developed by Alterra as part of Wageningen University and Research Centre, the National Institute of Public Health and the Environment (RIVM) and the Netherlands Environmental Assessment Agency (PBL) in close co-operation. PEARL is based on (i) the convection/dispersion equation including diffusion in the gas phase with a temperature dependent Henry coefficient, (ii) a two-site Freundlich sorption model (one equilibrium site and one kinetic site), (iii) a transformation rate that depends on water content, temperature and depth in soil, (iv) a passive plant uptake rate (Leistra at al, 2001). The model includes formation and behaviour of transformation products and describes also lateral pesticide discharge to drains (but drainage is switched off for the FOCUS scenarios). Volatilisation from the soil surface is calculated assuming a laminar air layer at the soil surface. PEARL uses an explicit finite difference scheme that excludes numerical dispersion (the dispersion length was set to 5 cm).

During the past years the PEARL model has been improved by including model descriptions for preferential flow. Furthermore, options for the improved plant module and volatilisation concepts have been implemented in the model. These new options are switched off for the FOCUS scenarios.

PEARL does not simulate water flow and soil temperatures itself but uses the Soil Water Atmosphere Plant (SWAP) model for that purpose. In SWAP, flow of water is described with Richard's equation using a finite implicit difference scheme (Kroes et al., 2008). SWAP can handle a wide variety of hydrological boundary conditions. Soil evaporation and plant transpiration can be calculated via multiplying a reference evapotranspiration rate with soil and crop factors. SWAP can simulate groundwater levels that fluctuate in response to the rainfall input. The groundwater level can also be introduced as a time table (option used for the Piacenza scenario). For the FOCUS scenarios, crop growth is simulated with SWAP using a simple growth model that assumes a fixed length of the growing season. In this growth model, both the leaf area index and the rooting depth are a function of the development stage of the crop.

SWAP describes flow of heat with Fourier's Law with a finite implicit difference scheme. The thermal properties are a function of porosity and water content and are therefore a function of time and soil depth.

In August 2003 FOCUS PEARL version 2.2.2 was released. An update of FOCUS_PEARL, version 3.3.3 has been released in May 2006. Since then, the PEARL model, shell and database have been developed further to FOCUS PEARL 4.4.4, which contains the revised scenario data as developed by the FOCUS Ground Water Work Group (FOCUS, 2009). This document describes the input to run the revised FOCUS groundwater scenarios with PEARL 4.4.4.

2 Parameterisation of PEARL 4

The Pesticide Emission Assessment for Regional and Local Scales model (PEARL) simulates the behaviour of substances in soil (Leistra et al., 2001; Tiktak et al., 2000). PEARL does not simulate water flow and soil temperatures, but uses output from the Soil Water Atmosphere (SWAP) model, so the software package for simulation consists of two models: SWAP and PEARL. Thus the simulation of leaching to groundwater with PEARL requires that first the hydrology of the soil system during the simulation period is computed with SWAP version 3.2. Daily SWAP output is written a file which is one of the input files needed for PEARL. However, the user has only to specify input to PEARL: the PEARL model itself organises the input for the SWAP model.

The PEARL User Interface was developed as a user-friendly environment for running FOCUS scenarios. The interface is an integrated environment for data storage and data retrieval, model control and viewing of output data (Figure 2).

Figure 2. Overview of the PEARL modelling system

The user interface is linked to a relational database for easy data access. It generates the input files for the PEARL model and calls the model. Summary outputs are transferred back to the PEARL database where they can be accessed. More comprehensive model outputs can be viewed with a separate graphical program, XYWin. Figure 3 shows the main screen of the user interface (see Tiktak

et al., 2000 and Van den Berg et al. 2012 for a detailed description of the PEARL User Interface).

The FOCUS input is stored in the database in such a way that all data are locked that should not be changed by the user. The user can generate a FOCUS scenario for a desired crop-location combination with a wizard as shown in Figure 4 (see Tiktak et al., 2000, for detailed instructions).

Figure 3 Main screen of PEARL User Interface

🛅 Projects	🔤 Calculate 💮 Focus	Wizard ? Help	😮 Exit				
owse Runs			(8946)				
RunID Sele	cted Name		ResultsSummary Resu	IltsDetailed			Reports
1	WCEREALS-CHATEAUDU	N, for demonstration	Available A	vailable		ter Gra	nhs user defi
						uiu	
						🔤 🏧 Gra	aphs, predefin
						[📴 Сору
						- rd H	+ - ~
						•	+ - -^
lit Run						* <u>F</u>	+ - ~^
lit Run Scenario Simulati	on Control Output Control Swap	p Hydrological Module R	un Status			• <u>Id</u> N	+ - ~
lit Run Scenario Simulati	on Control Output Control Swap	p Hydrological Module R	un Status			+ K H	+ - - ^ -
lit Run Scenario Simulati Name: WCERE	on Control Output Control Swaj	p Hydrological Module R tration	un Status	- Postisida az		▼ r ► D! Commentation	+ - ~~
lit Run Scenario Simulati Name: WCERE Scenario Location:	on Control Dutput Control Swap EALS-CHATEAUDUN, for demonst	p Hydrological Module R tration	un Status	Pesticide ar Substance:	nd scenario depende Substance A	r ► ► r r F r r	+ - ~^
lit Run Scenario Simulati Name: WCERE Scenario Location: Crop Calendar:	on Control Dutput Control Swap EALS-CHATEAUDUN, for demonst Chateaudun	p Hydrological Module R tration	un Status	Pesticide ar Substance: Application:	nd scenario depende Substance A Example FOCUS api		+ - ~
lit Run Scenario Simulati Name: WCERE Scenario Location: Crop Calendar: Irrigation:	on Control Dutput Control Swap ALS-CHATEAUDUN, for demonst Chateaudun CHAT-WCEREALS No irrigation	p Hydrological Module R tration	un Status	Pesticide ar Substance: Application: Deposition:	nd scenario depende Substance A Example FOCUS app No deposition	Fr Commen Int Dication	+ - ~
tit Run Scenario Simulati Name: WCERE Scenario Location: Crop Calendar: Irrigation: Tillane:	on Control Output Control Swap EALS-CHATEAUDUN, for demonst Chateaudun CHAT-WCEREALS No irrigation	p Hydrological Module R tration	un Status	Pesticide ar Substance: Application: Deposition:	nd scenario depende Substance A Example FOCUS app No deposition		+ - ~

Figure 4 Part of the FOCUS wizard of PEARL User Interface

Available Crops:	Selected Crops:
Apples Beans (field) Bush berries Cabbage Carots Citrus Cotton Grass (=alfafa) Linseed Oil seed rape (winter) Oil seed rape (winter) Onions Peas (animals)	Maize
Cancel	< Back Next > Finish
Cancel	< Back Next> Finish Vizard
Cancel	< Back Next> Finish Wizard Xizard Selected I continue:

2.1 General description of PEARL input

Soil system

For each FOCUS location, the top 0.5 m layer of the soil system consists of compartments with a thickness of 0.025 m. If the boundary falls within a horizon, then the whole horizon consists of compartments of 0.025 m. Below this depth up to a soil depth of 1.0 m the soil profile consists of compartments of 0.05 m. Below 1.0 m the soil system consists of compartments with a thickness of 0.10 m.

The soil hydraulic functions are described with the analytical function of Mualem – Van Genuchten. The values of the parameters in this function have been specified by the FOCUS workgroup for each FOCUS location-soil layer combination. For all 9 FOCUS soil profiles, the composition of each layer, i.e. the clay, silt and sand fractions and the organic matter fraction,

has also been specified by the FOCUS workgroup. Each soil layer is assumed to be homogeneous, so no preferential flow and flow through soil cracks occurs.

The potential evaporation from bare soil is calculated from the reference potential evapotranspiration by multiplication with a factor for bare soil. In the current version of SWAP, this factor is constant during the time the soil is bare. The FOCUS workgroup has set the value of this factor to 1.0.

The reduction of the potential evaporation from bare soil is described using the model by Boesten and Stroosnijder (1986). This model contains one parameter, beta. Boesten (1986, p. 63-64) reviewed beta values derived from literature and concluded that beta is usually in the range from 2 to 3 mm^{1/2} and is no function of soil texture. Therefore we used a beta value of 2.5 mm^{1/2} (corresponding with 0.79 cm^{1/2}).

The bottom boundary condition of the soil system depends on the average groundwater level. If the groundwater level is within the simulated soil profile then the course with time of the groundwater level is described. If the ground water level is below the simulated soil profile then a fixed groundwater level is assumed. At the start of each simulation, the pressure head in each compartment is assumed to be in hydrostatic equilibrium with the initial groundwater table.

Crop

In SWAP 3.2, the growth of the crop is expressed as a function of the development stage (DVS), which ranges from 0.0 (at crop emergence) to 2.0 (at the end of the crop cycle). At development stage 1.0 the crop reaches maturity. The crop growth can be simulated with a detailed or a simple crop model. For the FOCUS leaching scenarios, the simple crop model was used in all cases. Using this model, a fixed length of the growing cycle was selected. The length of the crop cycle is defined by the day of emergence and the day of the harvest as specified for each site-crop combination by the FOCUS work group. Thus, the same duration of the crop cycle was used for all simulated years within one scenario. In a fixed growth cycle the development stage increases linearly from 0.0 to 2.0 between the emergence of the crop and the end of the crop cycle (harvest).

The potential evapotranspiration is calculated from the reference potential evapotranspiration by multiplication with a crop factor for a dry canopy that completely covers the soil. In the current version of SWAP, the crop factor can be varied during the crop cycle. The crop factors used are those specified by the FOCUS workgroup. Daily values of the reference potential evapotranspiration are taken from the weather files as prepared by the FOCUS workgroup. The potential evapotranspiration is separated into the potential transpiration and potential evaporation on the basis of the leaf area index (LAI).

Irrigation schedules have been derived for crop(group)s for the 5 locations where irrigation is possible (Châteaudun, Piacenza, Porto, Sevilla and Thiva). These irrigation schedules provide irrigation from the time of planting until senescence and are generated using irrigation routines in SWAP, which apply irrigation once a week on a fixed day to bring the root zone up to field capacity. Irrigation is applied only if the amount required exceeds 15 mm.

Weather

The daily weather data for all 9 locations have been extracted from the MARS dataset by the FOCUS workgroup.

2.2 Description – PEARL 4 INPUT

As described before, the normal procedure is to generate FOCUS input via the database that is part of the PEARL 4 User Interface. This interface produces at run time three ASCII input files:

1. X.PRL containing all soil and substance input parameters with X as the run identification

2. Y. MET containing meteorological input in which Y is the name of the meteorological station

3. Y.BOT only for relevant locations, containing ground water level input data for the same location.

Below we specify the input in these three input files. The scenario and parameter definitions are based on:

1) **FOCUS DEFINITION** = Definitions made by the FOCUS working group

2) **FOCUS SCENARIO SPECIFIC** = Definitions made by the FOCUS group for a specific scenario

3) **DEVELOPMENT DEFINITION** = Definitions made during the PEARL FOCUS files development

4) **USER INPUT** = Input to be specified by the user in the PEARL FOCUS database.

Parameter a	nd description	Value, source & comments
Section 1: Contr	rol Section	
CallingProgram Release type		Set to FOCUSPEARL. DEVELOPMENT DEFINITION
CallingProgramVersion CallingProgramVersion		Set to 4.4.4. DEVELOPMENT DEFINITION
InitYears	Warm-up period	Set to 6. FOCUS DEFINITION
TimStart TimEnd	Starting time of simulation End time of simulation	Specified (dd-mm-yyyy) for the 26, 46 or 66 year scenario. FOCUS SCENARIO SPECIFIC
AmaSysEnd	Stopcondition (kg.ha ⁻¹)	Set to 0. DEVELOPMENT DEFINITION
ThetaTol	Maximum difference in water content between iterations	Set at the default value of 0.001 (m ³ .m ⁻³). DEVELOPMENT DEFINITION
OptDelTimPrn	Option to set output interval	USER INPUT. Default value for FOCUS is 'Month'
DelTimPrn	Print interval (d)	Set to 30 d. DEVELOPMENT DEFINITION

X.PRL file

OptScreen RepeatHydrology	Option to write output to screen y Repeat the same hydrology each year	Set to Yes. DEVELOPMENT DEFINITION Set to No. DEVELOPMENT DEFINITION
OptHyd Hy	drology simulation option	OptHyd set to Online, SWAP is called by PEARL and subsequently reads the SWAP output to compute the substance behaviour in soil. DEVELOPMENT DEFINITION
DelTimSwaMin	Minimum time step	The values for the minimum and maximum time steps for the discretization of the Richards' equation are
DelTimSwaMax	Maximum time step	taken to be 1.0 E-7 d and 0.2 d, respectively. DEVELOPMENT DEFINITION
PrintCumulatives	Option to output cumulative data	Set to Yes. DEVELOPMENT DEFINITION
GWLTol	Tolerance for groundwater level	Set to 1 m. DEVELOPMENT DEFINITION
MaxItSwa	Maximum number of iterations in SWAP	Set to 30. DEVELOPMENT DEFINITION
OptHysteresis	Option to include hysteresis	Set to No. DEVELOPMENT DEFINITION
PreHeaWetDryM	Iin Minimum pressure head to switch drying/wetting	Set to 0.2. Treated as a dummy. DEVELOPMENT DEFINITION
OptPersistency	Option to assess persistency in soil	Set to No. DEVELOPMENT DEFINITION
OptSys	System simulation option	Set to All. Both plant and soil are considered. DEVELOPMENT DEFINITION
OptPaddy	Option to assess paddy rice	Set to No. DEVELOPMENT DEFINITION
OptMacropore	Option to consider preferential flow	Set to No. DEVELOPMENT DEFINITION
Section 2: Soil S	ection	
SoilTypeID	Identification of soil type	The name consists of the first four letters of the name of the FOCUS location with the suffix '_S' DEVELOPMENT DEFINITION
Location		The name of the FOCUS location DEVELOPMENT DEFINITION
Table SoilProfile	Table defining the soil profile	Specify for each horizon: 1) The horizon number [1 10] FOCUS SCENARIO SPECIFIC, 2) Depth of the lower boundary (m) FOCUS SCENARIO SPECIFIC, 3) The number of soil compartments [1 500] DEVELOPMENT DEFINITION. The nodes are distributed evenly over each horizon.
Table horizon So	oilProperties Table specifying the soil composition for each horizon	Specify for each soil horizon: 1) the mass content of sand, expressed as a fraction of the mineral soil (kg.kg ⁻¹) [0 1], 2) the mass content of silt, expressed as a fraction of the mineral soil (kg.kg ⁻¹) [0 1], 3) the mass content of clay, expressed as a fraction of the mineral soil (kg.kg ⁻¹) [0 1], 4) the organic matter mass content (kg.kg ⁻¹) [0 1], and 5) the pH-KC1 [1,13]. The format [x,y] is used to specify the acceptable range (i.e. from x to y) of an input parameter. FOCUS SCENARIO SPECIFIC.

Table horizon V	anGenucl	ntenPar Table specifying the VanGenuchten parameters for each horizon	Specify for each soil horizon: 1) The saturated water content $(m^3.m^{-3})$ [0 0.95], 2) The residual water content $(m^3.m^{-3})$ [0 0.04, 3) Parameter alpha-dry (cm^{-1}) [1.d-3 1], 4) Parameter alpha-wet $(cm-1)$ [1.d-3 1], 5) Parameter n (-) [1 5], 6) The saturated conductivity $(m.d^{-1})$ [1.d-4 10], and 7) Parameter lambda (l) (-) [- 25 25]. FOCUS SCENARIO SPECIFIC
OptRho	Option for input of bulk density data		OptRho set to 'Input'. Rho (kg.m ⁻³) specified for each horizon. DEVELOPMENT DEFINITION.
ZPndMax	ax Maximum thickness of ponding water layer Ponding depth		The default value for the maximum thickness of ponding water layer is used, i.e. 2 mm. When the computed thickness of the ponding water layer exceeds 2 mm, the excess of water will be removed as run-off. DEVELOPMENT DEFINITION
OptSolEvp	Option method	to select evaporation reduction	Set to 'Boesten'. FOCUS DEFINITION
FacEvpSol	Coeffic soil	ient for evaporation from bare	Set to 1.0. FOCUS DEFINITION
CofRedEvp	Soil eva	poration coefficient	The coefficient is set at 0.79 cm ^{$1/2$} . DEVELOPMENT DEFINITION Set to 0.01 m d ⁻¹ DEVELOPMENT DEFINITION
Trewninzvp	WIIIIIII	in rannan to reset reduction	Set to 0.01 III d . DE VELOI MENT DEFINITION
Table horizon Le	enDisLiq	Dispersion length of solute in liquid phase [at least 0.5 times the compartment thickness]	Set to 5 cm for all layers. DEVELOPMENT DEFINITION
OptCofDifRel		Option for Tortuosity	The option of the relation of Millington & Quirk (1960) is selected. OptCofDifRel set to MillingtonQuirk. DEVELOPMENT DEFINITION
ExpDifLiqMilNo	om	Exponent in nominator of relation of Millington & Quirk for diffusion in the liquid phase.	Set to 2 (-). DEVELOPMENT DEFINITION
ExpDifLiqMilDe	en	Exponent in denominator of relation of Millington & Quirk for diffusion in the liquid phase.	Set to 0.6667 (-). DEVELOPMENT DEFINITION
ExpDifGasMilNo	om	Exponent in nominator of relation of Millington & Quirk for diffusion in the gas phase.	Set to 2 (-). DEVELOPMENT DEFINITION
ExpDifGasMilDe	en	Exponent in denominator of relation of Millington & Quirk for diffusion in the gas phase.	Set to 0.6667 (-). DEVELOPMENT DEFINITION
OptPnd		Option for ponding water	Set to constant. DEVELOPMENT DEFINITION
Section 3: Weat	her and i	rrigation section	
MeteoStation	Name of	of MeteoStation	The name of the station is based on the name of each

		FOCUS location. DEVELOPMENT DEFINITION
OptEvp	Option to select the type of data used by the model.	OptEvp set to Input. Use of reference evapotranspiration (Etref) data. FOCUS DEFINITION
TemLboSta	Initial lower boundary soil temperature [-20 40]	The initial temperature at the lower boundary is set equal to the average of the maximum and minimum air temperature on the first day of the first simulation year. DEVELOPMENT DEFINITION. The upper boundary temperature is read from meteo file. FOCUS SCENARIO SPECIFIC
FacPrc	Correction factor for precipitation	Set to 1.0. DEVELOPMENT DEFINITION.
DifTem	Correction for temperature	Set to 0.0. DEVELOPMENT DEFINITION.
FacEvp	Correction factor for evapotranspiration	Set to 1.0. DEVELOPMENT DEFINITION.
OptIrr	Option to choose between a scenario with and a scenario without irrigation	OptIrr set to no for FOCUS location-crop combinations for which irrigation is not considered. OptIrr set to 'Sprinkler_Weekly' for location-crop combinations for which irrigation is considered. FOCUS SCENARIO SPECIFIC
IrrigationScheme	e Identification of the irrigation scheme	Set to 'FOCUS'. FOCUS DEFINITION.
OptMetInp	Option for daily or hourly meteorology	Set to 'Daily'. FOCUS DEFINITION.
OptTraRes	Option to select the method to calculate the resistance to volatilisation	Set to Laminar (options are Aerodynamic and Laminar). FOCUS DEFINITION
OptRainfallEven	ts Option of detailed rainfall	Set to No. FOCUS DEFINITION.
OptSnow	Option for snow	Set to No. FOCUS DEFINITION.
Section 4a: Low	er Boundary flux	
ZGrwLevSta	Initial depth of groundwater level (m)	The value for the initial groundwater level, is taken to be equal to the average groundwater level for the specified location for which the scenario is run., except for Porto where the initial groundwater level is taken to be equal to the average groundwater level in the winter. Because a sinus function is used to describe the course with time of the groundwater level for Piacenza, the groundwater level calculated for the first day of the year is taken as the initial groundwater level. For Sevilla the groundwater level is set at 2.4 m. DEVELOPMENT DEFINITION.
OptLbo	Option for the lower boundary conditions	In one run the user has to choose between one of the eight lower boundary options that follow below. In this section the option for the bottom boundary condition is specified.
1. GrwLev	Groundwater level data input	Option 'GrwLev' offers the possibility to introduce data on the course with time of the ground water level

		within the year. In each scenario with this option selected, the course with time of the groundwater level applies to all simulated years.
		For the Piacenza site, the variation in the groundwater level is limited, it ranges between 0.7 and 1.3 m. The course of the groundwater level in this profile could not be simulated with the option 'FncGrwLev': the resulting fluctuations in the ground water level were far greater than the 0.6 m as given in the description of this profile. Therefore, the OptLbo GrwLev was selected and a sinus function was used to describe the variation in the ground water level. The amplitude was set at 0.3 m and the average groundwater level was set at 1.0 m. Using this function it was assumed that the ground water was deepest on 1 August and shallowest on 1 February. The computed daily values were introduced in the table GrwLev. For the Sevilla site the groundwater level is set at 2.4 m at all times. FOCUS SCENARIO SPECIFIC
2. Flux Region	al bottom flux	Not used in FOCUS scenarios.
3. Head Flux fro	om deep aquifer	Not used in FOCUS scenarios.
4. FncGrwLev	Bottom flux as function of groundwater level	OptLbo FncGrwLev offers the possibility of calculating the water flux at the bottom boundary of the soil system, q (cm d ⁻¹), as a function of the groundwater level h (in cm below the surface, negative value). If this option is chosen then the groundwater level should be within the simulated soil profile during the whole simulation period. The function for the description of the bottom flux is given by:
		$q = A \exp (B \cdot h)$
		in which the coefficient A, CofFncGrwLev, must be expressed in $m.d^{-1}$ and the coefficient B, ExpFncGrwLev, in m^{-1} .
		For the Hamburg, Jokioinen, Kremsmünster and Porto sites, the groundwater level was described by setting OptLbo at FncGrwLev. The value of A was -0.01 m d^{-1} for each site. The value of B was estimated by judgement of graphical output from test runs of the course with time of the groundwater table using meteodata for three consecutive years. The computed course was compared with the limited data available on the (average) groundwater level in the soil profile. For the Hamburg, Jokioinen, Kremsmünster and Porto sites the value of B was estimated to be -1.4 , -2.0 , -1.7 and -1.25 m^{-1} respectively (See Figure 1 for examples of groundwater fluctuations). FOCUS SCENARIO SPECIFIC
5. Dirichlet	Pressure head of bottom compartment	Not used in FOCUS scenarios.
6. ZeroFlux	Bottom flux equals zero	Not used in FOCUS scenarios.
7. FreeDrain	Free drainage of soil profile	The ground water level for the Châteaudun (around 12 m). Okehampton (around 20 m) and Thiya (> 5 m) sites

		is deep, so OptLbo is set to FreeDrain which allows free drainage at the bottom of the soil profile. FOCUS SCENARIO SPECIFIC
8. Lysimeter interface	Free outflow at soil-air	Not used in FOCUS scenarios.
Section 4b: Drainage/inf	ïltration section	
OptDra	Option to consider drainage	Set to 'No'. Drainage not considered in FOCUS
OptSurDra	Option to consider surface drainage	Set to 'No'. FOCUS DEFINITION
NumDraLev	Number of drainage levels	NumDraLev set to 0. FOCUS DEFINITION
Section 5: Compound se	ction	
MolMas_subst1 Substan	ce Molar Mass	In g/mol. USER INPUT
Table compounds Subst1 End_table	List of substances.	First substance is parent, the others are metabolites. USER INPUT .
OptDT50_subst1	Option for DT50	Option for DT50. USER INPUT
Table FraPrtDau (mol.mol 0.71 Subst1 -> MET- Subs end_table	-1) st1	Transformation table (parent-daughter relationships). The fraction transformed is expressed on an amount-of- substance basis (so in mol.mol ⁻¹). The fractions transformed have to be estimated from soil metabolism studies for transformation products. USER INPUT .
OptCntLiqTraRef_subst1	Option to use the moisture content during the incubation study (CntLiqTraRef)	Set to 'OptimumConditions'. Using this option, it is assumed that the incubation experiment has been done under optimum moisture conditions (matric pressure of -100 hPa). DEVELOPMENT DEFINITION
DT50Ref_subst1	Half-Life of transformation	DT50 (half-life) in days at reference conditions (topsoil, 20 degrees Celsius and matric pressure of – 100 hPa). USER INPUT
TemRefTra_subst1	Temperature of reference at which the half-life of transformation was measured	In Celsius. USER INPUT
ExpLiqTra_subst1	Coefficient describing the relation between the transformation rate of the substance and the volume fraction of liquid	USER INPUT . Default value defined by FOCUS 0.7 (dimensionless).
CntLiqTraRef_subst1	Reference content of liquid in transformation study from which DT50 was derived	Not used in FOCUS scenarios. DEVELOPMENT DEFINITION

MolEntTra_subst1	Molar activation enthalpy of transformation	USER INPUT . Parameter in Arrhenius equation describing the relation between the conversion rate of the substance and soil temperature. Default value defined by EFSA 65.4 kJ.mol ⁻¹ .
Table horizon FacZTra Hor subst1	Factor for the influence of depth on transformation rate of the substance in soil as a function of soil layer [0 1]	Table listing factors for each substance in 'Table compounds'. The length of each table equals the number of horizons. FOCUS SCENARIO SPECIFIC
Table horizon FacZSor Hor subst1	Factor for the influence of depth on sorption rate of the substance in soil as a function of soil layer [0 1]	Table listing factors for each substance in 'Table compounds'. The length of each table equals the number of horizons. FOCUS SCENARIO SPECIFIC
OptCofFre	Option to choose between pH- dependent or pH-independent sorption	Set to pH-independent, so the Freundlich sorption equation is used. The sorption coefficient is calculated by multiplying the coefficient of sorption on organic matter and the organic matter content. FOCUS DEFINITION.
ConLiqRef_subst1	Reference liquid content for the sorption coefficient	Set to 1 mg.L ⁻¹ . DEVELOPMENT DEFINITION
ExpFre_subst1	Freundlich exponent	USER INPUT.
KomEql_subst1	Coefficient of equilibrium sorption of substance on organic matter (Kom).	In L/kg. Measured at temperature TemRefSor. USER INPUT
KomEqlMax_subst1	Coefficient of maximum equilibrium sorption of substance on organic matter (Kom).	In L/kg. Measured at temperature TemRefSor. Not relevant (dummy) if OptSys set to 'PlantOnly'. USER INPUT
MolEntSor_subst1	Molar enthalpy of sorption	USER INPUT . Describing the relation between the sorption coefficient of the substance and temperature. Default value defined by FOCUS workgroup 0 kJ/mol.
TemRefSor_subst1	Temperature of reference at which the sorption coefficient was measured	In degrees Celsius. USER INPUT
PreVapRef_subst1	Saturated vapour pressure of substance	In Pa. Measured at temperature TemRefVap. USER INPUT
TemRefVap_subst1	Temperature of reference at which the saturated vapour pressure was measured	In degrees Celsius. USER INPUT
SlbWatRef_subst1	Water solubility of substance	Mass concentration in water at saturation (in mg/L) measured at reference temperature TemRefSlb. USER INPUT

TemRefSlb_subst1	Temperature of reference at which the water solubility was measured	In degrees Celsius. USER INPUT
MolEntSlb_subst1	Molar enthalpy of the dissolution	USER INPUT . Describing the relation between the water solubility of the substance and temperature. Default value defined by FOCUS workgroup 27 kJ/mol.
MolEntVap_subst1	Molar enthalpy of the vaporization process	USER INPUT . Describing the relation between the saturated vapour pressure of the substance and temperature. Default value defined by FOCUS workgroup 95 kJ/mol.
Non-equilibrium sorption		
CofDesRat_subst1 FacSorNeqEql_subst1	Rate of desorption Factor relating coefficient for equilibrium and non- equilibrium sorption	Non-equilibrium sorption not considered in FOCUS scenarios, so CofDesRat_subst1 and FacSorNeqEql_subst1 are set to zero. FOCUS DEFINITION
<i>Uptake</i> FacUpt_subst1	Coefficient for uptake by plant roots	USER INPUT . Passive uptake due to transpiration (dimensionless). Default value defined by FOCUS workgroup Set to 0.5.
Volatilization ThiAirBouLay Thickne the soil	ess of the stagnant air layer at surface	Set to 0.01 m. DEVELOPMENT DEFINITION
Canopy processes OptDspCrp_subst1	Option for the description of the loss routes of substance from the crop surface	Option set to 'Lumped'. In the FOCUS scenarios only soil applications occur, so these parameters are not relevant. DEVELOPMENT DEFINITION
DT50DspCrp_subst1	Half-life for the disappearance of the substance on the crop	If OptDspCrp is set to 'Lumped' then value for DT50DspCrp (d) is required. Because no crop applications occur in the FOCUS scenarios, this value is considered as a dummy value. DEVELOPMENT DEFINITION
DT50PenCrp_subst1	Half-life for the penetration of the substance in the plant tissue	In d. USER INPUT.
DT50VolCrp_subst1	Half-life for the volatilisation of the substance from the crop	In d. USER INPUT.
DT50TraCrp_subst1	Half-life for the photo- transformation of the substance on the crop	In d. USER INPUT
FacWasCrp_subst1	Factor for the wash-off of substance from the crop by rainfall or irrigation.	Not relevant in FOCUS scenarios. DEVELOPMENT DEFINITION
<i>Diffusion of solute in liqui</i> TemRefDif_subst1	<i>d and gas phases</i> Temperature of reference at which diffusion coefficients were measured	In degrees Celsius. USER INPUT

CofDifWatRef_subst1	Coefficient of diffusion of the substance in water	USER INPUT . Default value defined by FOCUS workgroup $4.3E-5 \text{ m}^2/d$.
CofDifAirRef_subst1	Coefficient of diffusion of the substance in air	USER INPUT . Default value defined by FOCUS workgroup $0.43 \text{ m}^2/\text{d}$.
Section 6: Management s ApplicationScheme	section Name of application scheme.	USER INPUT.
ZTgt	FOCUS target depth (m)	Set to 1.0 m. FOCUS DEFINITION.
DelTimEvt	Time difference in years between two subsequent events	For the 26-years, 46-years, and 66-years scenarios DelTimEvt is set to 1, 2 and 3 respectively. DEVELOPMENT DEFINITION
Management events table Applications 01-Emg-01 AppSolSur 1 end_table	1.00	The first two columns of the Applications table contain: 1) The application dates and 2) The application option. The application dates can be relative to the day of emergence(Emg) or the day of the harvest (Har) or they can be specified as dates. In the FOCUS scenarios the application option is always set to AppSolSur: application at the soil surface. When the application option is set to AppSolSur then column 3 contains the dosage (kg/ha).
table TillageDates end_table	Date and depth of tillage for each tillage event.	No ploughing is considered, so no dates are entered. FOCUS DEFINITION .
ZTil	Tillage depth (m)	Set to dummy value, because no ploughing is considered.
<i>Initial conditions</i> Table interpolate CntSysE z B 0.00 0.00 50.0 0.00 end_table	ql Concentration in equilibrium domain	In mg.kg ⁻¹ . Concentration set to 0. FOCUS DEFINITION .
Table interpolate CntSysN B 0.00 0.00 50.0 0.00 end_table	leq Concentration in non- equilibrium domain	In mg.kg ⁻¹ . Concentration set to 0. FOCUS DEFINITION .
Upper boundary flux DepositionScheme table FImDep end_table ZTil	Deposition scheme Date and flux of deposition (kg.ha-1.da-1) Tillge depth (m)	No dates are entered, so the flux is zero throughout the simulation period. FOCUS DEFINITION . No ploughing is considered, so no values are entered. FOCUS DEFINITION
Section 7: Crop section CropCalendar		The name consists of a combination of the first four letters of the FOCUS location and the suffix specifying the crop group code, e.g. CHAT-WCEREALS.

		DEVELOPMENT DEFINITION
RepeatCrops	Option to repeat the growth of the same crop each year	Set to 'Yes'. FOCUS DEFINITION.
Table Crops 20-Sep 15-Aug Sugarbe end_table	Crop calendar table et	The table contains three columns: 1) emergence date, 2) harvest date and 3) name of the crop. For the FOCUS scenarios RepeatCrops is set to 'Yes', so the specification of the year is not required. Crop dates are specified according to the data specified for the crops in the FOCUS scenarios. FOCUS SCENARIO SPECIFIC
OptLenCrp	Option to select the type of plant growth model	Set to 'Fixed', so the length of the crop cycle fixed is the same each year. DEVELOPMENT DEFINITION
Table CrpPar_sugarbeet 0.00 0.00 1.00 0.00 0 0.72 0.10 1.00 0.20 0 0.84 4.80 0.74 0.95 0 1.00 4.80 0.74 0.95 0 end_table	Table with crop parameters	Table with crop parameters as a function of development stage. The table contains 5 columns: 1) the development stage (development stage at emergence = 0; development stage at harvest =1), 2) LAI: Leaf Area Index (m2.m-2), 3) Crop factor for evaporation, 4) Rooting depth (m) and 5) Crop height (m). In the input data for the FOCUS scenarios, the LAI is given as a function of the Julian day number. Three time points are given, i.e. the day of emergence (or leaf emergence), the day when the maximum LAI is reached and the day of the harvest (or leaf fall). For the first and the last time point the value for the DVS is known. Because the DVS is a linear function of time, the value for the DVS on the day when the maximum LAI is reached is calculated from the Julian day number by linear interpolation. Thus, the LAI is a linear function of time based on three pairs of DVS-LAI values. Note that the day on which the maximum LAI is reached is always the same, so the value for the DVS when the maximum LAI is reached is also the same each year. For winter crops, an additional DVS-LAI pair is introduced. It is assumed that little growth occurs during the winter period. Therefore, real crop growth is assumed to start as soon as the average daily temperature reaches 10 °C. On this day the LAI is taken to be 0.1. For winter oil seed rape growth starts as soon as the temperature reaches 7.5 °C. The values for the crop factor for evaporation are specified by the FOCUS workgroup and these data were transformed into DVS-CF pairs using the same procedure as for the LAI. The values for the rooting depth are defined as a function of time by the FOCUS workgroup and these data were transformed into DVS- RDTB pairs using the same procedure as for the LAI. For perennial crops the rooting depth is constant throughout the year. FOCUS SCENARIO SPECIFIC Because crop height is not relevant in the FOCUS project, dummy values are used. DEVELOPMENT DEFINITION
Table RootDensity_suga 0.00 1.00 1.00 1.00 end_table	rbeet Root density table	The root density table contains two columns: 1) the relative rooting depth (0 at soil surface and 1 the rooting depth) and 2) the relative root density (-). The root density distribution is listed as a function of the

		relative rooting depth. The default values of SWAP are taken, so the potential rate of water uptake is uniform over the rooting depth. DEVELOPMENT DEFINITION		
Crop water use HLim1_ sugarbeet	no water extraction at higher	For the description of the crop water use, values for the		
HLim2_ sugarbeet	pressure heads pressure head below which optimal water use	water pressure) of Feddes et al. (1978) are specified for each crop (See Annexes C and D, Van Dam et al.,		
HLim3U_ sugarbeet	pressure head below which reduction starts when Tpot high	1997). If for a specific crop no data were listed, then the missing values were set equal to the values for a similar crop for which data were available. For the		
HLim3L_ sugarbeet	pressure head below which reduction starts when Tpot low	crops in the FOCUS scenarios the values for the parameters in the water extraction function are listed in Table 1. DEVELOPMENT DEFINITION		
HLim4_ sugarbeet	No water extraction below this pressure			
.stEvpCrp_ sugarbeet Canopy resistance		Because the Penman-Monteith equation is not used in the FOCUS scenarios, the value for the minimum canopy resistance (RstEvpCrp, in s.m ⁻¹) is treated as a dummy. DEVELOPMENT DEFINITION		
CofExtDif_ sugarbeet	Extinction coefficient for diffuse global radiation	The product of CofExtDir and CofExtDif equals 0.39, i.e. the same value as that specified by Ritchie (1972) and Feddes (1978). DEVELOPMENT DEFINITION		
CofExtDir_sugarbeet	Extinction coefficient for direct global radiation			
CofIntCrp_ sugarbeet	Interception coefficient	In the FOCUS scenarios, the interception of water by the crop is assumed to be negligible. The value for the coefficient of Von Hoyningen-Hune and Braden, is set at 0. FOCUS DEFINITION		
TemSumSta_ sugarbeet	Start value of temperature sum	Not considered in FOCUS scenarios. Treated as a dummy. DEVELOPMENT DEFINITION		
TemSumEmgAnt_ sugarbo	eet Temperature sum from emergence to anthesis	Not considered in FOCUS scenarios. Treated as a dummy. DEVELOPMENT DEFINITION		
TemSumAntMat_sugarbeet Temperature sum from anthesis to maturity		Not considered in FOCUS scenarios. Treated as a dummy. DEVELOPMENT DEFINITION		
ZTensiometer_sugarbeet	Depth of (virtual) tensiometer	Not considered in FOCUS scenarios. Treated as a dummy. DEVELOPMENT DEFINITION		
PreHeaIrrSta_ sugarbeet	Critical pressure head for irrigation	Not considered in FOCUS scenarios. Treated as a dummy. DEVELOPMENT DEFINITION		
IrgThreshold_sugarbeet	Irrigation threshold (mm)	Set to 15 mm. FOCUS DEFINITION.		

Y.BOT file

Parameter and description	Value, source & comments
table GrwLev (cm)	The groundwater level table contains two columns: 1) the date of the ground water level in the format dd-
Table with groundwater level data	mmm-yyyy and 2) the depth of the groundwater level
01-Jan-1901 -240.0	(cm). Groundwater levels below the soil surface have
31-Dec-1901 -240.0	negative values. FOCUS SCENARIO SPECIFIC

Y.MET file

Parameter and description		Value, source & comments	
Meteo table	Table with meteorological data	The meteo data are extracted from the MARS dataset for all locations. The meteo data file contains daily data in 11 columns: 1) the name of the weather station, 2) the day, 3) the month, 4) the year, 5) the solar radiation (kJ m ⁻²), 6) the minimum air temperature (°C), 7) the maximum air temperature (°C), 8) the air humidity (kPa), 9) the wind speed (m s ⁻¹), 10) the rainfall (mm) and 11) the reference evapotranspiration (mm). FOCUS SCENARIO SPECIFIC	

Table 1 Values for coefficients (in cm water layer)^a in the water withdrawal function (based on data listed in Van Dam et al., 1997) for the crops selected by the FOCUS workgroup.

Crop	HLIM1	HLIM2	HLIM3H	HLIM3L	HLIM4
Apples	-10.0	-25.0	-500.0	-800.0	-16000.0
Bush berries	-10.0	-25.0	-200.0	-300.0	-16000.0
Cabbage	-10.0	-25.0	-600.0	-700.0	-16000.0
Carrots	-10.0	-25.0	-550.0	-650.0	-16000.0
Citrus	-10.0	-25.0	-300.0	-700.0	-16000.0
Cotton	100.0	100.0	-1000.0	-2000.0	-16000.0
Field Beans	-10.0	-25.0	-750.0	-2000.0	-16000.0
Grass	-10.0	-25.0	-200.0	-800.0	-8000.0
Linseed	-0.0	-1.0	-500.0	-900.0	-16000.0
Maize	-15.0	-30.0	-325.0	-600.0	-8000.0
Onions	-10.0	-25.0	-500.0	-600.0	-16000.0
Peas	-10.0	-25.0	-300.0	-500.0	-16000.0
Soybean	-10.0	-25.0	-750.0	-2000.0	-16000.0
Summer cereals	-0.0	-1.0	-500.0	-900.0	-16000.0
Summer oil seed	-0.0	-1.0	-500.0	-900.0	-16000.0
Summer potatoes	-10.0	-25.0	-320.0	-600.0	-16000.0
Sunflower	-15.0	-30.0	-325.0	-600.0	-8000.0
Strawberries	-10.0	-25.0	-200.0	-300.0	-16000.0
Sugar beet	-10.0	-25.0	-320.0	-600.0	-16000.0
Tobacco	-10.0	-25.0	-300.0	-800.0	-16000.0
Tomatoes	-10.0	-25.0	-800.0	-1500.0	-16000.0
Vegetable beans	-10.0	-25.0	-750.0	-2000.0	-16000.0
Vines	-10.0	-25.0	-700.0	-750.0	-16000.0
Winter cereals	-0.0	-1.0	-500.0	-900.0	-16000.0
Winter oil seed	-0.0	-1.0	-500.0	-900.0	-16000.0

^{a)} HLIM1 = pressure head above which there is no water extraction; HLIM2 = pressure head below which optimal water extraction; HLIM3H = pressure head below which reduction in water extraction starts if potential transpiration is high; HLIM3L = pressure head below which reduction in water extraction starts if potential transpiration is low; HLIM4 = pressure head below which there is no water extraction.

References

Boesten, J.J.T.I. and L. Stroosnijder, 1986. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate. Neth. J. Agr. Sci. 34: 75-90.

Boesten, J.J.T.I., 1986. Behaviour of herbicides in soil: simulation and experimental assessment. Doctoral thesis, Institute for Pesticide Research, Wageningen, Netherlands, 263 pp.

Feddes, R.A., Kowalik, P.J. and H. Zaradny, 1978. Simulation of field water use and crop yield. Pudoc, Wageningen, the Netherlands, 188 pp.

FOCUS, 2009. "Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU" Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 1, 604 pp.

Kroes, J.G., J.C. Van Dam, P. Groenendijk, R.F.A. Hendriks and C.M.J. Jacobs, 2008. SWAP version 3.2. Theory description and user manual. Alterra Report 1649, Wageningen, The Netherlands.

Leistra, M., van der Linden, A.M.A., Boesten, J.J.T.I., Tiktak, A. and van den Berg, F., 2001. PEARL model for pesticide behaviour and emissions in soil-plant systems; Descriptions of the processes in FOCUS PEARL v 1.1.1. Alterra report 13, RIVM report 711401009.

Millington, R.J. and J.P. Quirk, 1960. Transport in porous media, p 97-106. In F.A. van Beren et al., Trans. Int. Congress Soil Sci. Soc. 7th, Volume 1, Madison, WI, Elsevier, Amsterdam.

Ritchie, J.T., 1972. A model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res. 8: 1204-1213.

Tiktak, A., F. van den Berg, J.J.T.I. Boesten, D. van Kraalingen, M. Leistra and A.M.A. van der Linden, 2000. Manual of FOCUS Pearl version 1.1.1. RIVM Report 711401008, Alterra Report 28, RIVM, Bilthoven, 142 pp.

Van Dam, J.C., J. Huygen, J.G. Wesseling, R.A. Feddes, P. Kabat, P.E.V. van Walsum, P. Groenendijk and C.A. Van Diepen, 1997. Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment. Technical Document 45, DLO Winand Staring Centre, Wageningen, The Netherlands.

Van den Berg, F., A. Tiktak, D. van Kraalingen, A.M.A. Van der Linden and J.J.T.I. Boesten, 2012. Documentation update for FOCUS_PEARL 4.4.4, Alterra, Wageningen, The Netherlands