Version: 2.0 Date: April 11th, 2011

PELMO - Parameterisation for the FOCUS Groundwater Scenarios

About this document

The report on which this document is based is that of the FOCUS Groundwater Scenarios workgroup, which is an official guidance document in the context of 91/414/EEC [full citation is FOCUS (2000) "FOCUS groundwater scenarios in the EU review of active substances" Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000 rev.2, 202pp]. This document does not replace the official FOCUS report. However, a need was identified to maintain the parameterisation of the models for the FOCUS groundwater scenarios in an up-to-date version controlled document, as changes become necessary. That is the purpose of this document.

<u>Summary of changes made since the official FOCUS</u> <u>Groundwater Scenarios Report (SANCO/321/2000 rev.2).</u>

New in Version 1.0

Compared to the original report changes has been made in

- Figure C.4 Running PELMO simulations using WPELMO.EXE
- Parameterisation description, section on "soil scenario files"
- Parameterisation description, section on "substance files"

The changes were necessary to keep the parameterisation document up-to-date with the current model version.

The only other changes in this version compared with the original report are editorial ones.

New in Version 2.0

Compared to the original report and version 1 extensive changes have been made to fulfil the requirements of FOCUS (2009): "Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU" Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 1, 604 pp. That includes

- new shell description
- new scenario parameterisation
- new input file description

1. Summary

This manual describes version 4.0 of the computer program PELMO which stands for "Pesticide Leaching Model". Previous versions have been developed and described by Klein (1995) and Jene (1998). PELMO is based originally on the PRZM 1 model of US-EPA (Carsel 1984), but it was independently developed since 1989.

PELMO estimates the vertical transport of pesticides in the unsaturated soil system within and below the plant root zone. The equations which describe transport and transformation of pesticides in PELMO have been selected on the basis of the test studies that are available for these substances. For example, all input data on sorption and degradation of pesticides required for PELMO simulations are readily available because they are requested by the authorities within the registration procedure and published in registration reports. It is recommended to use only (these) parameter sets and parameterisation procedures as agreed with regulatory authorities, when simulations are performed to realistically assess the leaching potential of substances used in current agricultural practice. Information on the validation status of prior PELMO versions with lysimeter studies and groundwater monitoring are available e.g. from Hardy et al 2008, Jene et al. 1998, Jene et al. 1999, Klein et al. 1997, Trevisan et al. 2003.

PELMO considers various environmentally relevant processes (run-off, erosion, plant uptake, sorption, leaching, degradation in soil and on plants, and volatilisation of pesticides). However, the model has been mainly used to estimate the leaching potential in the regulatory context mentioned above (described in more detail at e.g. FOCUS 2000, 2002, 2009, Michalski et al. 2004, website of Federal Office for Consumer Protection BVL¹).

http://www.bvl.bund.de/DE/04_Pflanzenschutzmittel/03_Antragsteller/04_Zulassungsverfahren/07_Naturhaush alt/psm_naturhaush_node.html

Process	Approach	
water movement	capacity-based water flow (tipping bucket approach) using a daily time step for all hydrological processes A two-parameter linear response model with a threshold to simulate macro pore flow (not parameterised for FOCUS simulations)	
substance movement	convection dispersion equation	
crop simulation	changing root zone during growing season, changing foliage (areal extent) during growing season, crop interception of water*, crop interception of substances*, foliar washoff*, foliar degradation*	
degradation in soil	first order degradation rate, correction of rate constant with depth, soil moisture and soil temperatures	
substance sorption to soil	Kd, Koc, Freundlich equation for equilibrium sorption kinetic sorption following the Streck approach (which is equivalent to the realisation in FOCUS PEARL) to describe increase of sorption with time	
substance volatilisation (from soil)	simple model using Fick's and Henry's law	
substance fate on plant surfaces	volatilisation from leaves*, penetration into leaves*, wash-off* and photo-transformation*	
runoff*	Soil Conservation Service curve number technique	
preferential flow*	simple threshold model assuming perfect mixing with the resident water in a shallow surface layer of soil*	
soil erosion*	Modified Universal Soil Loss Equation	
soil temperature	an empirical model that uses air temperatures	
plant uptake	simple model based on soil concentrations and a plant uptake factor	
substance applications	applications may be foliar sprays, applied to the soil surface, or incorporated into the soil; for soil incorporated applications a variety of soil distributions can be specified	
metabolism	a sophisticated scheme with up to 8 metabolites (A -> B as well as $A -> B -> C$) may be simulated simultaneously with the parent	

Table 1.1 Summary of the processes in PELMO

* = turned off for the FOCUS scenarios

2. Description of the PELMO shell

2.1.Introduction

The PELMO version that was used for the implementation of the FOCUS-scenarios was developed in 2009 (PELMO 4). It was necessary to change the format of the scenario and pesticide data files and the handling of leap years slightly because of the needs of the FOCUS-scenarios.

Also the shell had to be changed to fulfil the requirements of FOCUS (2009).

PELMO.EXE runs under Microsoft DOS. However, to make editing and creating of PELMO input files easier in a Microsoft Windows environment, a shell called WPELMO.EXE was built around PELMO.EXE.

2.2.File handling

The information necessary to run PELMO.EXE is divided in a number of input data files. The shell WPELMO.EXE allows creating or editing of these files by the user. For each simulation a single substance data file (extension: PSM), a single scenario data file (extension: SZE) and a number of climate data files (extension: CLI) are necessary. For FOCUS-tier 1 -simulations only the substance data file has to be created by the user himself; the scenario and climate data files are already defined and should not be modified.

Before the user starts a PELMO simulation the scenario (location and crop, possibly irrigation) and the substance data file has to be set. The required scenario and climate input data files (*.cli and *.sze) are automatically selected by the shell and written into a small ASCII file called PELMO.INP. This file will be read by the simulation program PELMO.EXE (see Figure C.1).

The file HAUDE.DAT contains the monthly Haude-factors. This information is not used for FOCUS-simulations. However, the file must be in the FOCUS-directory of PELMO.

Figure 1: File handling between the simulation program PELMO.EXE and the shell WPELMO.EXE

Before the user starts a PELMO simulation the scenario (location and crop, possibly irrigation) and the pesticide data file has to be set. The required scenario and climate input data files (*.cli and *.sze) are automatically selected by the shell and written into a small ASCII file called PELMO.INP. This file will be read by the simulation program PELMO.EXE (see the figure).

The file HAUDE.DAT contains the monthly Haude-factors. This information is not used for FOCUS-simulations. However, the file must be present in the FOCUS-directory of PELMO.

During the simulation PELMO.EXE creates a number of output files:

- ECHO.PLM: echo of all input parameters of the specific simulation
- WASSER.PLM: hydrologic output data (tables)
- CHEM.PLM: pesticide output data (tables)
- CHEM_xx: metabolite output data (tables), xx=A1, A2, B1, B2, ...
- PLOT.PLM: time series output file, used by WPELMO.EXE to create diagrams
- IRR.PLM: time series of daily irrigation. This file was used for internal testing only. The first three column refer to the date (day, month, year), the last column gives the irrigation amount (cm/day)

When a PELMO simulation successfully terminates the annual average concentrations at 1 m depth and at the soil bottom are calculated by WPELMO.EXE based on the results written inti WASSER.PLM (hydrology output), CHEM.PLM (pesticide output) and CHEM_xx (metabolite output). WPELMO also creates the files MBALANCE.PLM and PBALANCE.PLM which contain the total annual mass balances for water (MPBALANCE.PLM) and for the pesticide/metabolites (PBALANCE.PLM).

2.3. Creating substance data files for PELMO simulations

After WPELMO has been loaded the form shown in Figure 2 is shown.

Figure 2: PELMO 4: Intro screen

The form objects on the left hand side are used to select input files for simulations the objects on the right hand side can be used to create or modify input files.

When clicking at one of the three blue boxes simulations can be performed considering the FOCUS groundwater or EFSA soil scenarios. These simulations scenarios will be automatically performed according to the respective recommendations. However, as long as the EFSA soil scenarios are not officially released the two EFSA boxes remain disabled. The forth box can be used to perform individual simulations without the restrictions associated with the predefined scenarios.

To create pesticide data files for PELMO using WPELMO the user has to follow two steps. First the metabolism scheme has to be defined (Figure 3).

Figure 3: PELMO 4: metabolism scheme

The metabolism scheme shows 9 boxes which represent the parent compound together with 8 transformation products. The boxes can be activated after defining a transformation rate by clicking at the diagrams attached to the dotted arrows (see Figure 4).

Transformation AS	to CO 🔳 🗖 🔀		
Transformation rate DT 50 DT 90	034657 perday 0. days 6.4 days		
Rate correction in soil C Recommended correction C No correction C Individual correction			
Temp. during study Q10-Value	20 °C 2.2		
 abs. moisture during sture rel. moisture during study Walker exponent 	dy 0 Vol % 100 % FC 0.7		
rel. deg. at neq. site	s: 0		
OK (Cancel		

Figure 4: PELMO 4: Editing transformation rates

PELMO always considers SFO kinetics which means that the transformation rate can be expressed also by DT50 or DT90 values. If one of the first three fields is modified, the remaining two will be automatically updated. For the temperature and soil moisture correction PELMO offers a "recommended" parameter setting which is suggested by FOCUS (2000) and FOCUS(2009):

- moisture: transformation rate related to field capacity, Walker exponent: 0.7
- temperature: Q10 factor: 2.58 related to 20 °C.
- relative degradation at non-equilibrium sites set to 0

If a transformation rate other than zero has been entered and the form closed, the black dotted arrow on the metabolism scheme turns into a bold red arrow and the respective red box turns into red.

If a certain transformation pathway should be switched off the respective transformation rate has to be set to "0".

In the second step substance specific input data should be entered for each activated box.

Active Substance		
Name: FOCUS DUMMY D Comment: Pesticide D Mol Mass [g/mol]: 300		
Application Data: Kind of Application © Soil Application Content of the second sec		
absolute applications Every 3rd Year 1st application month: May Mode of application: Every 3rd Year Application Rate (kg/ha) 1 Number of applicature 22 Jonut Application certa Manually Application depth (cm) 0		
1 application every 3rd year Number of applications per year: ->		
Plant uptake factor: 0.5		
Volatilization and Soil Photolysis Data: Vapor Aquaeus Soil Photolysis Reference Henry Constant Temperature Pressure Solubility Rate [1/d] Radiation Direct Input C Calculated 20 1.00E-04 90 0 500		
Sorption Data: Koc Value Freundlich ph-dependent sorption Kt-Value [mL/g] Exponent ph-dependent sorption C Direct Input 60 0.9 kinetic sorption		
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):		
O Standard values (Tier 1) O Constant with depth O Individual		
Show all input parameters Cancel Done		

Figure 5: PELMO 4: Editing pesticide input data (absolute application pattern)

The form shown in Figure 5 is loaded when after a click at the box for the active compound. For the application mode the user can decide between absolute applications (application dates related to a certain location independent on the crop) or relative applications (application dates related to a certain crop independent on the location).

For absolute application patterns the location must be selected first followed by additional information on the application pattern (application date, rate and depth). For each location a different number of applications within a year can be defined. If more than one application per year is to be simulated the total number of application per year must be entered first. Afterwards a certain application within the sequence can be reached by clicking at the arrows "previous/next application".

Active Substance		
Name: FOCUS DUMMY D Comment: Pesticide D Mol Mass [g/mol]: 300		
Application Data: Kind of Application Image: Soil Application Soil Application Image: Plant Application - Manuall crop interception Plant Application - Linear Image: Plant Application - Linear Ist application: Image: Plant Application - Linear Ist application:		
relative applications dates (FOCUS PECgw only)		
Mode or optication: Every 3rd Year Application Rate (kg/ha)0.0		
Number of applications: 22		
1 application every 3rd year Number of applications per year: < 1 ->		
Plant uptake factor: 0.5		
Volatilization and Soil Photolysis Data: Vapor Aquaeus Pressure Solubility Soil Photolysis Reference Rate [1/d] Image: Temperature 1 remperature 1 Temperature (°C) Image: Temperature (°C) Image: Temperature 1 Calculated		
Sorption Data: Koc Value Freundlich ph-dependent sorption KFValue [mL/g] Exponent ph-dependent sorption Direct Input 60 0.9 kinetic sorption		
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):		
• Standard values (Tier 1) • Constant with depth • Individual		
Show all input parameters Cancel Done		

Figure 6: PELMO 4: Editing pesticide input data (relative application pattern)

For relative application patterns (Figure 6) the crop must be selected first followed by the information on the application pattern as described before. However, the application dates are entered relatively to crop development stages. The crop development stages in the database are based on the FOCUS scheme (FOCUS 2009). If a specific crop is planted more than one time per year (e.g. carrots) the application dates are always related to the first cropping period.

According to the FOCUS recommendations regular applications can be applied annually, biennially, or triennially.

C Active Substance	
Name: FOCUS DUMMY D Comment: Pesticide D Mol Mass [g/mol]: 300	
Application Data: Kind of Application Soil Application Plant Application - Manual crop interception Plant Application - Linear Plant Application - Exponential As long as the selected application mode is irregular, you have to enter the application data manually	
Absolute applications dates	
Number of applications: 22 Input Application Data Manually 1	
Plant uptake factor: 0.5	
Volatilization and Soil Photolysis Data: Vapor Aquaeus Soil Photolysis Refer Henry Constant Temperature Pressure Solubility Ratia Temperature 1 C Direct Input (°C) IPal [mg / L] 20 1.00E-04 90 0 500	ence ation /㎡]
Sorption Data: Koc Value Freundlich ph-dependent sorption KK-Value [mL/g] Exponent ph-dependent sorption Direct Input 60 0.9 kinetic sorption	n
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):	
• Standard values (Tier 1) • Constant with depth • O Individual	
Show all input parameters Cancel Dor	ne

Figure 7: PELMO 4: Editing pesticide input data (irregular application pattern)

If pesticides are applied irregularly (what means that the pattern changes in a different way than described earlier) the application dates must be entered in a specific table which can be called when clicking at the button "Input Application Data Manually".

Active Substance
Name: FOCUS DUMMY D Comment. Devicide D Mol Mass [g/mol]: 300
Application Data: Kie of Application Soil Application Pesticide Fatt on the Crop Plant Application - Linear Plant Application - Exponential absolute applications dates Mode of applications: Irregular Number of applications: Plant Application Data Manually
Plant uptake factor: 0.5
Volatilization and Soil Photolysis Data: Vapor Aquaeus Soil Photolysis Reference Rate [1/d] Radiation [W/m²] Temperature 1
Sorption Data: Koc Value Freundlich ph-dependent sorption C Direct Input Exponent Exponent kinetic sorption C Calculated with KOC 0.9 kinetic sorption
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):
• Standard values (Tier 1) • O Constant with depth • O Individual
Show all input parameters Cancel Done

Figure 8: PELMO 4: Editing pesticide input data (Soil or plant application)

PELMO distinguishes between four different kinds of application

- soil application (which is the default for FOCUS groundwater simulations)
- plant application manual crop interception
- plant application linear model
- plant application exponential model

"plant application – manual crop interception" is a new option which allows the definition of a percentile of the rate which remains on the crop but maybe reaches the soil later due to wash-off induced by rainfall and irrigation. The other two options define the crop interception automatically according to the actual development of the crop. The pesticide fate on plant surfaces can be described in a new form which is loaded after clicking at the button "pesticide fate on the crop" (see Figure 7).

Pesticide Fate on Crops	
Washoff-coefficient (1/cm)	0
Rate for penetration (1/d)	0
Rate for Photodegrad. at ref. condition	ns 0
Reference radiation (W/m²)	500
Laminar layer for volatilisation (cm)	0.03
Volatilisation Enthalpy (J/mol)	98400
ОК	Cancel

Figure 9: PELMO 4: Pesticide fate on the crop surface

Four different processes (wash-off from plants, penetration into plants, volatilisation from plants, photo-degradation on plants) can be simulated if the necessary input parameters are entered. If a certain process should be switched off, the respective rate constant has to be set to "0".

PELMO considers the uptake of pesticides by plant roots (see Figure 10). The recommended value for systemic compounds is "0.5" which means that the pesticide concentration taken up by the plant root is 50 % of the soil water concentration in the respective soil layer. If the parameter is set to "0" pesticide uptake by plant roots will be switched off.

Active Substance	×	
Name: FOCUS DUMMY D Comment: Pesticide D	Mol Mass [g/mol]: 300	
Application Data: Kind of Application Soil Application Plant Application - Manual crop interception Plant Application - Linear Plant Application - Exponential	absolute application dates Location: Châteaudun (C) Leaching locations Soil locations 1st application day: 1	
absolute applications dates	1st application month: May	
Mode of application: Every 3rd Year Number of applications: 22 Input Application Data Manually	Application Rate (kg/ha) 1 Application depth (cm) 0 <- previous / next application	
1 application every 3rd year N	ımber of applications per year: <u><</u> 🚹 ->	
Plant root uptake factor: 0.5		
Volatilization and Soil Photolysis Data:	Soil Photolysis Reference	
Henry Constant Temperature Vapor Temperature 1 O lirect Input (°C) Iressure Calculated 20 1.00E-04	Aquaeus Rate [1/d] Radiation Solubility [W/m²] [mg / L] 0 500	
Sorption Data: Koc Value Freundlich	nh-dependent soration	
KFValue [mL/g] Exponent [mL/g] Calculated with KOC [60 [.9	kinetic sorption	
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):		
	u l	
	Show all input parameters Cancel Done	

Figure 10: PELMO 4: Modifying the plant root uptake factor

For the estimation of temperature dependent volatilisation from soil surfaces and the transport in the soil air Henry's law constant (or alternatively: water solubility and vapour pressure) must be given for 2 different temperatures (see the rectangle in Figure 11). Photolysis on the soil surface can be considered when entering a soil photolysis rate together with the references radiation.

Active Substance		
Name: FOCUS DUMMYA Comment: Pesticide A, winter cereals	Mol Mass [g/mol]: [300	
Application Data: Kind of Application Soil Application Plant Application - Manual crop interception Plant Application - Linear Plant Application - Exponential	elative application dates Crop: Winter cereals st application: 1 days	
relative applications dates (FOCUS PECgw only)	before Ist emergence	
Mode of application: Every Year	Application Rate (kg/ha) Applicatin depth (cm) 0 previous / next application	
1 application every year Num	ber of applications per year: <u><- 1 -></u>	
Plant root uptake factor: 0.5		
Volatilisation from soil surface and Soil Photolysis Data Henry Constant Temperature Vapor Pressure (°C) Temperature 1 Oirect Input Calculated 100E-10	a: Soil Photolysis Reference Aquaeus Rate [1/d] Radiation Solubility [/w/m²] [mg / L] 0 [500	
Sorption Data: Aloc Value Freunance KFValue C Direct Input C Calculated with King 10 0.9 pH dependent Sorp	ph-dependent sorption kinetic sorption	
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):		
Standard values (Tier 1) O Constant with depth O Individual		
	Show all input parameters Cancel Done	

Figure 11: PELMO 4: Considering volatilisation and soil photolysis

The simplest way to consider sorption is to enter kfoc-value and the respective Freundlich exponent. If necessary, depth dependent Kf-values, kinetic sorption parameters or pH-dependent sorption in soil can be considered on additional forms which can be called by clicking at the respective buttons (see the arrows in Figure 12).

Active Substance		
Name: FOCUS DUMMY A Comment: Pesticide A, winter cereals	Mol Mass [g/mol]: 300	
Application Data: Kind of Application Soil Application Plant Application - Manual crop interception Plant Application - Linear Plant Application - Exponential	relative application dates Crop: Winter cereals 1st application: 1	
relative applications dates (FOCUS PECgw only)	before Ist emergence	
Mode of application: Every Year Number of applications: 26	Application Rate (kg/ha)1 Applicatin depth (cm) 0	
1 application every year Nur	mber of applications per year: <- 1 ->	
Plant root uptake factor: 0.5		
Volatilisation from soil surface and Soil Photolysis Data: Soil Photolysis Reference Henry Constant Temperature Vapor Aquaeus C Direct Input [°C] [Pal [mg / L] 20 1.00E-10 90 0		
Sorption Data: Kfoc Value Freundlich Kfvalue [L/kg] Exponent C Direct Input [L/kg] 0.9 all dependent Sounties kin Sounties	ph-dep_ent sorption	
Depth Dependent Sorption and Transformation Data (FOCUS Tier 2):		
⊙ Standard values (Tier 1) O Constant with depth O Individual		
	Show all input parameters Cancel Done	

Figure 12: PELMO 4: Extended Input sheet to consider kinetic sorption in PELMO

🖻 pH depen	dent sorption d	ata 📃 🗖 🔀
KOC (L/kg):	10	atpH 8
KOC (L/kg):	500	atpH 5
pKa:	6	□ KOC only at a single pH known
Cancel	Done	

Figure 13: PELMO 4: Editing pH-dependent sorption parameters

kinetic Sorption	
Fraction of non-eq sites to eq-sites	0.5
Desorption rate (1/d):	0.1
PEARL definition C STRECK definiton	
Cancel Done	

Figure 14: PELMO 4: Editing kinetic sorption parameters

The forms for pH-dependent sorption and kinetic sorption parameterisation are presented in Figure 13 and Figure 14, respectively. If pesticide input files include parameters for the estimation of these processes flags appear on the main pesticide input form (see Figure 11). It is possible to select PEARL or Streck parameter definitions by using the radio buttons on the form. Figure 14 shows the PEARL input parameters, Figure 15 the respective Streck variables. When switching between the two modes the parameters are automatically transferred according to the equations in the previous chapter.

When using the non-equilibrium sorption module in PELMO it has to be considered that compared to the traditional definition of the sorption constant in PELMO - the Streck definition is different because it is related to the equilibrium domain in soil only and not (as in previous PELMO versions) to the total soil (equilibrium and non-equilibrium domain). That may lead to confusion when kinetic sorption is switched off (desorption rate set to "0"). Still overall sorption constants will depend on f_{eq} (Streck). Therefore, in the field "KOC Value" (see the yellow arrow in Figure 12) always the (normal) equilibrium sorption constant related to the whole soil has to be entered (consistent with previous versions of PELMO).

kinetic Sorption	
STRECK fraction of eqsites to all-sites (f_eq):	0.7692307692
STRECK sorption rate 'alpha' (1/d):	2.307692E-03
C PEARL definition . I STRECK definiton	
Cancel Done	

Figure 15: Parameter setting using the Streck-model

3. Parameterisation descriptions

The implemented scenario and parameter definitions are based on:

- FOCUS DEFINITION = Definitions made by the FOCUS working group
- **FOCUS SCENARIO SPECIFIC** = Definitions made by the FOCUS working group for a specific scenario
- **DEVELOPMENT DEFINITION** = Definitions made during the PELMO file development
- USER INPUT = Input to be specified by the user in the PELMO shell

3.1.Meteorological files (*.CLI)

Parameter and description		Value, source & comments
RECORD 1		
TITLE:	label for meteorological file	FOCUS SCENARIO SPECIFIC
RECORD 2 -	- REPEAT FOR EACH DAY OF A YEAR	
MMDDYY:	meteorological month/day/year	FOCUS SCENARIO SPECIFIC
PRECIP:	precipitation (cm day ⁻¹)	Used are 9 location specific weather scenarios and 24
PEVP:	pan evaporation data (cm day ⁻¹)	crop and location specific irrigated weather scenarios.
TEMP:	14h temperature per day (°C)	hourly data are not considered for EOCUS scenarios
AVTEMP:	mean temperature per day (°C)	nourly data are not considered for FOCUS scenarios
VATEMP:	difference between min. and max. temperature per day (°C)	
RELMOI:	rel. humidity (%) – not used	
RAD:	Radiation (kJ/m ²)	
HOUR:	hour (only if hourly weather data available	

3.2.

Soil scenario files (*.SZE)

Parameter	and description	Value, source & comments
Record 1 TITLE:	label for scenario title	FOCUS SCENARIO SPECIFIC
RECORD 2 PFAC(0):	pan factor when no crop is present	FOCUS DEFINITION - crop specific values are defined by the kc_year factors (see table with CN in
	used to estimate the daily potential evapotranspiration (ET) from the daily pan evaporation.	record 9). These calibration factors reflect the soil surface and aerodynamic resistance as effective annual averages.
SFAC:	snowmelt factor in cm/degrees Celsius above freezing. IPEIND: Pan evaporation flag.	set to 0.46 - DEVELOPMENT DEFINITION - SFAC is an empirical factor with wide variation. The value 0.46 represents an appropriate average based on data in the PRZM 3.12 manual and on Anderson, E.A.; 0.46 is also default value in PELMO 3.0
IPEIND:		set to 0 = daily pan evaporation is read from the meteorological file - FOCUS DEFINITION
ANETD:	minimum depth for soil evaporation (cm)	DEVELOPMENT DEFINITION - This location specific factor is highly correlated to the climatic conditions; based on the US distribution map and the relevant 20 year average annual air temperature following values are suggested for the specific FOCUS scenarios:
INICROP:	initial crop number	<pre>set to 1 = simulate initial crop - DEVELOPMENT DEFINITION</pre>
ISCOND:	surface condition of initial crop	set to 1 = fallow DEVELOPMENT DEFINITION
PFAC(1):	pan factor at maturation used to estimate the daily potential evapotranspiration (ET) from the daily pan evaporation.	FOCUS DEFINITION - crop specific values are defined by the kc_year factors (see table with CN in record 9). These calibration factors reflect the soil surface and aerodynamic resistance as effective annual averages.
PFAC(2):	pan factor at senescence used to estimate the daily potential evapotranspiration (ET) from the daily pan evaporation.	FOCUS DEFINITION - crop specific values are defined by the kc_year factors (see table with CN in record 9). These calibration factors reflect the soil surface and aerodynamic resistance as effective annual averages.

RECORD 3		
ERFLAG:	flag to select simulation of erosion.	set to $0 = no$ erosion - FOCUS DEFINITION
RECORD 4		
NDC:	number of different crops in the simulation.	set to $1 = \text{only one crop} - FOCUS DEFINITION}$
RECORD 5 -	REPEAT UP TO NDC	
ICNCN:	crop number of the different crop.	set to $1 =$ the crop used - FOCUS DEFINITION
CINTCP:	maximum interception storage of the crop (cm).	set to zero = no rainfall interceptionFOCUS DEFINITION
		FOCUS SCENARIO SPECIFIC
AMXDR:	maximum rooting depth of the crop (cm).	FOCUS SCENARIO SPECIFIC - is set to the
COVMAX:	maximum areal coverage of the canopy (percent).	maximum interception percentages (crop and location specific values vary from 45% to 90%)
		set to 3 = residue DEVELOPMENT DEFINITION
ICNAH:	date (fallow, cropping, residue).	Runoff is calculated by a modification of the USDA
CN:	runoff curve numbers of antecedent moisture condition II for fallow, cropping, residue (3 values).	Soil Conservation Service curve number approach (Haith <i>et al.</i> , 1979). The curve numbers were selected based on two definitions:
		 SCS hydraulic Soil Group: The SCS group was chosen for Piacenza to be A, Hamburg to be B and for all the rest locations to be C - FOCUS DEFINITION
		2) Curve Numbers: Crop and soil specific CN are defined corresponding to values of PELMO 4.0, the original USDA definition and the PRZM 4 manual. – DEVELOPMENT DEFINITION
		THOUGH THE NECESSARY INPUT DATA IS PROVIDED RUNOFF IS NORMALLY NOT CONSIDERED FOR TIER 1 SIMULATIONS (SEE RECORD 13)

		SCS soil group:	Α	В	С	D	HTMAX	PFAC
		- fallow + residue	77	86	91	94	-	1.00
		– apples (orchards)	36	60	73	79	250	0.99
		– grass (+alfalfa)	30	58	71	78	40	1.00
		– potatoes	62	83	89	93	100	0.94
		– sugar beet	58	72	81	85	40	0.93
		– winter cereals	54	70	80	85	100	0.84
		- beans (field+vegetable)	67 26	78	85 72	89 70	150	0.89
		– bush berries	36	60	73	79	130	1.00
		– cabbage	58	72	81	85	30	0.97
		– carrots	58	12	81	85	40	0.96
		– citrus	36	60	73	79	250	0.73
		- cotton	67	78	85	89	120	0.95
		- linseed	54	70	80	85	150	0.84
		– maize	62	83	89	93	250	0.94
		– oil seed rape (sum)	54	70	80	85	140	0.93
		– oil seed rape (win)	54	70	80	85	140	0.78
		– onions	58	72	81	85	60	0.91
		– peas (animals)	67	78	85	89	100	0.96
		– soybean	67	78	85	89	170	0.92
		 spring cereals 	54	70	80	85	110	0.92
		– strawberries	58	72	81	85	40	1.00
		– sunflower	62	83	89	93	150	0.86
		– tobacco	67	78	85	89	250	0.98
		– tomatoes	62	74	81	86	110	0.97
		– vines	45	62	73	79	170	0.89
USLEC:	Universal so	bil loss equation cover		For all pe citrus, gra used for f Only requ set to 1 –	rennial c ass, straw fallow and uired if E DEVEL	rops (alfa berries, v d residue! RFLAG = OPMEN	lfa, apples, bush ines) the same (= 1 F DEFINITIO 1	iberries CN are
	management residue.	t factor for fallow, crop and		set to 0.0	= not u	sed - FO	CUS DEFINIT	TION
WFMAX:	maximum di canopy (kg i	ry weight of the crop at full m^{-2}).		(only requ	uired if n	on-linear	foliar applicatio	on).
RRPPEX:	poorly expo	sed transformation fraction		set to 0.0 (only requ	= not us uired if n	sed - FO on-linear	CUS DEFINIT foliar applicatio	T ION on).
RRRPEX:	poorly expo	sed penetration fraction		set to 0.0 (only requ	= not us uired if n	sed - FO on-linear	CUS DEFINIT foliar applicatio	T ION on).
BBADEA.	noorly avno	sed volatilisation fraction		set to 0.0	= not us	sed - FO	CUS DEFINIT	TION
KKVĽEA.	poorry expo			set to 0.0		ed - FO	CUS DEFINIT	ny. TON
RRWPEX:	poorly expo	sed wash-off fraction		(only requ	uired if n	on-linear	foliar applicatio	n).
IRRFLG:				set to 0.0 set to 1.0	for non-i for irriga	rrigated c ited crops	rops - FOCUS DEF	INITION
PEREN:				set to 0.0 set to 1.0	for non-i for irriga	rrigated c ted crops	rops - FOCUS DEF	INITION
RECORD 6								

set to 66 (= longest possible simulation period) -	

NCPDS: number of cropping periods.	FOCUS DEFINITION
Record 7 - Repeat up to NCPDS	
E_MMDDYY: crop emergence date (month/day/year).	FOCUS SCENARIO SPECIFIC
M_MMDDYY: crop maturation date.	FOCUS SCENARIO SPECIFIC
H_MMDDYY: crop harvest date.	FOCUS SCENARIO SPECIFIC
INCROP: crop number associated with NDC	set to 1 (only one crop) - FOCUS DEFINITION
H_MMDDYY: crop senescence date.	FOCUS SCENARIO SPECIFIC
T_MMDDYY: crop tillage date.	not used in FOCUS

RECORD 8		
CORED:	total depth of soil core (cm)	FOCUS SCENARIO SPECIFIC
DUMMY:	dummy number	former plant uptake factor, not considered here any more, this parameter is now read in from the pesticide data file.
NCOM2	total number of simulation compartments in the soil core	FOCUS SCENARIO SPECIFIC
BDFLAG		set to $0 = not$ used
THFLAG:	field capacity and wilting point flag.	set to 0 = the FOCUS SCENARIO SPECIFIC soil water contents are used -
		<u>Comment:</u> another PELMO option would be to calculate field capacity and wilting point by internal pedotransfer rules using scenario specific clay and sand contents.
HSWZT:	drainage flag.	set to 0 = free draining - FOCUS DEFINITION
RECORD 9		
NHORIZ:	total number of horizons	FOCUS SCENARIO SPECIFIC
DELXFLG:	layer thickness flag	set to $0 = \text{NOT}$ used

RECORD 10	A -REPEAT 10A-10B UP TO NHORIZ	
HORIZN:	horizon number in relation to NRHORIZ.	FOCUS SCENARIO SPECIFIC
THKNS:	soil horizon thickness (cm).	FOCUS SCENARIO SPECIFIC
BD:	soil bulk density [g cm ⁻³]	FOCUS SCENARIO SPECIFIC
DISP:	Dispersion length ($cm^2 day^{-1}$)	set to 5 cm-FOCUS DEFINITION
THETO:	initial soil water content in the soil horizon $(cm^3 cm^{-3})$	set to THEFC – DEVELOPMENT DEFINITION
AD: :	drainage parameter (1/d ³)	NOT USED FOCUS DEFINITION
RECORD 10	B-REPEAT 10A-10B UP TO NHORIZ	
THEFC:	field capacity ($cm^3 cm^{-3}$).	FOCUS SCENARIO SPECIFIC
THEWP:	wilting point ($cm^3 cm^{-3}$).	FOCUS SCENARIO SPECIFIC
OC:	organic carbon content (%)	FOCUS SCENARIO SPECIFIC
PH:	pH value	FOCUS SCENARIO SPECIFIC
Biodeg:	relative biodegradation factor	depth dependent correction factor applied to thesubstance(s) degradation rates FOCUS DEFINITION $0 - 30 \text{ cm depth}$ 1 $30 - 60 \text{ cm depth}$ 0.5 $60 - 100 \text{ cm depth}$ 0.3> 100 cm depth0
RECORD 11		
ILP:	Initial level of substance indicator	set to 0 = no initial substance levels input – DEVELOPMENT DEFINITION
RECORD 12		
ITEM1:	Hydrology output summary indicator	DEVELOPMENT DEFINITION
STEP1:	Time step of hydrology output	set to YEARLY – DEVELOPMENT DEFINITION
LFREQ1:	Frequency of soil compartment reporting	set to 1 = every compartment is output – DEVELOPMENT DEFINITION
ITEM2:	Substance output summary indicator	DEVELOPMENT DEFINITION
STEP2:	Time step of substance output	set to YEARLY – DEVELOPMENT DEFINITION
LFREQ2:	Frequency of soil compartment reporting	set to 1 = every compartment is output – DEVELOPMENT DEFINITION
ITEM3:	Substance concentration profile indicator	DEVELOPMENT DEFINITION
STEP3:		
	Time step of substance concentration profile output	set to YEARLY – DEVELOPMENT DEFINITION

		DEVELOPMENT DEFINITION
RECORD 13		
ROFLAG:	runoff flag	set to $0 = no runoff - FOCUS DEFINITION$
DEPRO:	runoff depth (cm)	NOT USED (IF RUN-OFF FLAG = 0)
DOC:	dissolved organic carbon (mg/L)	NOT USED FOCUS DEFINITION D
DOCFLG:	doc flag	NOT USED FOCUS DEFINITION
DEPMA:	depth of macro pores (cm)	NOT USED FOCUS DEFINITION
IC:	threshould rainfall that produces macro	NOT USED FOCUS DEFINITION
	pore now (cm)	NOT USED FOCUS DEFINITION
FMAC:	fraction routed into macro pores (cm)	
RECORD 14		
GEOBREI:	Latitude	FOCUS SCENARIO SPECIFIC
		<u>Comment:</u> The geographical latitude is usually required only for calculation of the evapotranspiration by the methods of Hamon or Haude, whereas the FOCUS DEFINITION is to use daily pan evaporation data.

3.3.Substance file (*.PSM)

Parameter and description		Value, source & comments		
Comment: Te understanding changed.	<u>Comment:</u> Text and / or lines in the substance file that are given in brackets (< >) are comments for easier understanding of the file structure and mark the beginning or end of a parameter section. These lines should not be changed.			
The compound volatilisation a similar set of j	d parameters are described here only for the p are taken into account also for each metabolite parameters needs to be included, leaving out o	arent compound. In principle, all processes except from b. Therefore, for each metabolite to be simulated, a sonly the volatilisation data.		
COMMENT				
CTITLE:	label for substance	USER INPUT		
SOIL HORIZ	ZONS			
NHORIZ:	total number of soil horizons	set to $0 = not$ used - DEVELOPMENT DEFINITION		
		<u>Comment:</u> This parameter is required if depth dependent biodegradation factors are specified in the substance file instead of the scenario file. The parameter has then to be set to the scenario specific number of horizons.		
NUMBER OI	F LOCATIONS			
N_LOC:	number of locations for which applications will be defined (1-10)	FOCUS SCENARIO SPECIFIC / USER INPUT		
DUMMY:		not used		
REL_ABS_A	PP:	0: absolute application dates9: relative application dates		
APPLICATIO	ONS - REPEAT UP TO N_LOC			
NAPS:	total number of substance applications occurring at different dates $(1 - 200)$.	FOCUS SCENARIO SPECIFIC / USER INPUT		

APPLICATIO	ONS – REPEAT UP TO NAPS	
(IF ABSOLU	TE APPLICATIONS ARE SELECTED)	
APD:	Day of the month of application	USER INPUT
APM:	Month of application	USER INPUT
IAPYR:	Year of application	USER INPUT
TAPP:	Total application rate (kg ha ⁻¹)	USER INPUT
DEPI:	Depth of incorporation (cm)	USER INPUT
COVAPP:	crop interception during application (%)	NOT USED FOR FOCUS SIMULATIONS
FRPEC:	fraction of poorly exposed pesticide	NOT USED FOR FOCUS SIMULATIONS
APT:	application hour	NOT USED FOR FOCUS SIMULATIONS
APPLICATIO	DNS – REPEAT UP TO NAPS	
(IF RELATIV	VE APPLICATIONS ARE SELECTED)	
APD:	Day relative to crop status	USER INPUT
APM:	crop development type (emergence, harvest)	USER INPUT
IAPYR:	Year of application	USER INPUT
TAPP:	Total application rate (kg ha ⁻¹)	USER INPUT
DEPI:	Depth of incorporation (cm)	USER INPUT
COVAPP:	crop interception during application (%)	NOT USED FOR FOCUS SIMULATIONS
FRPEC:	fraction of poorly exposed pesticide	NOT USED FOR FOCUS SIMULATIONS
APT:	application hour	NOT USED FOR FOCUS SIMULATIONS
APPLICATIO	ON MODE	
FAM:	Substance application model	USER INPUT
		 Selectable chemical application methods are: 1 = application to soil only 2 = foliar application using the linear model 3 = non-linear foliar application using exponential filtration model 4 = application to the foliar, manual crop interception Note: Foliar application needs to be activated to simulate washoff from plant foliage and degradation of foliage substance.

FOLIAR APPLICATION PARAMETERS (ONLY IF FAM = $2 \text{ or } 3$)		
PLDKRT:	Decay rate on the plant foliate $(days^{-1})$	Not used for FOCUS scenarios
FEXTRC:	Foliar extraction coefficient for substance washoff per cm of precipitation	Not used for FOCUS scenarios
FILTRA:	Filtration parameter. Only required for exponential model (FAM = 3).	Not used for FOCUS scenarios
FILTRA:	Filtration parameter. Only required for exponential model (FAM = 3).	Not used for FOCUS scenarios
FPENET:	Penetration rate into the plant foliate (day ⁻¹) FPENET	Not used for FOCUS scenarios
PHRATE:	Photodegardation rate (1/d)	Not used for FOCUS scenarios
RADREF:	Reference radiation (W/m ²)	Not used for FOCUS scenarios
DLAM:	Laminar layer for volatilisation from foliate (W/m ²)	Not used for FOCUS scenarios
FLAGS		
VAPFLG:	Henry's constant flag	 USER INPUT 0 = Henry's constant input by user 1 = Henry's constant calculated
KDFLAG:	K _D flag	USER INPUT $0 = K_D$ input by user $1 = K_D$ calculated from K_{OC}

VOLATILISATION 2 RECORDS, ONE FOR EACH TEMPERATURE		Commente Honmi's constant H is a notice of a
HENRYK:	normalised Henry's law constant of the active substance (dimensionless).	<u>Comment:</u> Henry's constant H is a ratio of a chemical's vapour pressure to its solubility. It represents the equilibrium between the vapour and solution phases.
):
		HENRYK = H / (R*T) = P*M / (C*R*T)
		P = vapour pressure (Pa) - USER INPUT M = mol weight (g mole ⁻¹) - USER INPUT C = water solubility (mg L ⁻¹) - USER INPUT R = gas constant = $8.3144 \text{ J K}^{-1} \text{ mole}^{-1}$ T = absolute temperature (K)
SOLUB:	Solubility in water (mg L ⁻¹)	USER INPUT
MOLMAS:	Molar mass (g mol ⁻¹)	USER INPUT
VAPPRE:	Vapour pressure (Pa)	required for calculation of Henry's constant - USER INPUT
DAIR:	molecular diffusion coefficient for the substance(s) in the air $(cm^2 sec^{-1})$	required for calculation of Henry's constant - USER INPUT
VOLGRE:	depth for volatilisation (cm)	set to 0.1 cm – FOCUS DEFINITION
T_VOL:	Related Temperature (°C)	USER INPUT
PLANT UPTAKE		
UPTKF:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration)	USER INPUT set to 0.5 for systemic compounds (default) set to $0 = \mathbf{no}$ plant uptake for other compounds Other values not to be used for TIER 1 modelling!
DEGRADAT METABOLIS RESIDUES /	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂	USER INPUT set to 0.5 for systemic compounds (default) set to $0 = \mathbf{no}$ plant uptake for other compounds Other values not to be used for TIER 1 modelling!
UPTKF: DEGRADAT METABOLIS RESIDUES / DKRATE:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂ degradation rate constant (day ⁻¹)	USER INPUT set to 0.5 for systemic compounds (default) set to 0 = no plant uptake for other compounds Other values not to be used for TIER 1 modelling! USER INPUT - Can also be entered as a DT50 value
DEGRADAT METABOLIS RESIDUES / DKRATE: TEMP0:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂ degradation rate constant (day ⁻¹) reference temperature for the degradation rate constant (°C)	USER INPUT set to 0.5 for systemic compounds (default) set to 0 = no plant uptake for other compounds Other values not to be used for TIER 1 modelling! USER INPUT - Can also be entered as a DT50 value USER INPUT
UPTKF: DEGRADAT METABOLIS RESIDUES / DKRATE: TEMP0: Q10:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂ degradation rate constant (day ⁻¹) reference temperature for the degradation rate constant (°C) Q10-factor for degradation rate increase when temperature increases by 10°C	USER INPUT set to 0.5 for systemic compounds (default) set to 0 = no plant uptake for other compounds Other values not to be used for TIER 1 modelling! USER INPUT - Can also be entered as a DT50 value USER INPUT USER INPUT default = 2.2 - FOCUS DEFINITION
DEGRADAT METABOLIS RESIDUES / DKRATE: TEMP0: Q10: ABSFEU:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂ degradation rate constant (day ⁻¹) reference temperature for the degradation rate constant (°C) Q10-factor for degradation rate increase when temperature increases by 10°C absolute reference moisture content during the degradation studies (%Vol)	USER INPUT set to 0.5 for systemic compounds (default) set to 0 = no plant uptake for other compounds Other values not to be used for TIER 1 modelling! USER INPUT - Can also be entered as a DT50 value USER INPUT USER INPUT default = 2.2 - FOCUS DEFINITION USER INPUT
DEGRADAT METABOLIS RESIDUES / DKRATE: TEMP0: Q10: ABSFEU: FELFEU:	plant uptake factor (between 0.000 and 1.0; describes uptake as a fraction of transpiration* dissolved phase concentration) ION - REPEAT FOR ATION PATHS A1 – D1 AND BOUND CO ₂ degradation rate constant (day ⁻¹) reference temperature for the degradation rate constant (°C) Q10-factor for degradation rate increase when temperature increases by 10°C absolute reference moisture content during the degradation studies (% Vol) relative reference moisture content during the degradation studies (% of FC (field capacity))	USER INPUT set to 0.5 for systemic compounds (default) set to 0 = no plant uptake for other compounds Other values not to be used for TIER 1 modelling! USER INPUT - Can also be entered as a DT50 value USER INPUT USER INPUT default = 2.2 - FOCUS DEFINITION USER INPUT USER INPUT USER INPUT be specified, the other parameter should be set to 0

	(moisture relationship according to WALKER)	
FLAG		
DEGFLAG:	flag controlling depth dependent degradation	 USER INPUT 0: degradation according to degradation factors in the scenario file 1: degradation constant with depth 2: degradation according to individual factors in the pesticide data file
		For TIER 1 modelling the flag should be set to 0.
ADSORPTIO	N (IF $KDFLAG = 1$)	
KOC:	K_{OC} value (ml g ⁻¹)	USER INPUT
FRNEXKOC:	Freundlich exponent 1/n (dimensionless)	USER INPUT
PH_KOC:	pH value	USER INPUT default = 7
PKA:	pKA value	USER INPUT default = 20, ie in practice not used
FRNMIN:	lower limit concentration for the non- linear sorption according to Freundlich $(\mu g L^{-1})$	USER INPUT default = $10^{-20} \mu g L^{-1}$
ALTERN:	annual increase of adsorption (%)	USER INPUT default = 0 (no increase of sorption with time)
K_DOC:	Equilibrium constant for DOC (L/kg)	not used for FOCUS simulations
KOC_MOI:	Increase when soil is air dried (-)	USER INPUT default = 0 (no increase of sorption with mositure)
KOC2:	second K_{OC} value at a different pH (ml g ⁻¹)	USER INPUT
PHKOC2:	pH value related to the second KOC	USER INPUT
FNEQ:	fraction of non-equilibrium sites	USER INPUT
KDES	desorption rate (1/d)	USEK INPUT

DEPTH DEPENDENT SORPTION AND DEGRADATION (ONLY IF DEGFLAG=2) – REPEAT FOR EACH SOIL HORIZON		
KD :	K_D value (ml g ⁻¹)	USER INPUT (only considered by PELMO if kdflag = 0)
FRNEXP:	Freundlich exponent 1/n (dimensionless)	USER INPUT (only considered by PELMO if kdflag = 0)
DEG(1):	depth dependent correction of degradation rate for metabolism path A1	USER INPUT
DEG(2):	depth dependent correction of degradation rate for metabolism path B1	USER INPUT
DEG(3):	depth dependent correction of degradation rate for metabolism path C1	USER INPUT
DEG(4):	depth dependent correction of degradation rate for metabolism path D1	USER INPUT
DEG(5):	depth dependent correction of degradation rate for metabolism path BR/CO2	USER INPUTComment: the depth dependent correction of degradation can also be specified in the scenario file.According to FOCUS DEFINITION dependent correction factors are $0 - 30 \text{ cm depth}$ 1 $30 - 60 \text{ cm depth}$ 0.5 $60 - 100 \text{ cm depth}$ 0.3> 100 cm depth0

3.4.Control file PELMO.INP

Parameter and description		Value, source & comments
RECORD 1		
IYEAR:	number of years of simulation period	26, 46, or 66 years - FOCUS DEFINITION
ISDAY:	start day of simulation	1 - DEVELOPMENT DEFINITION
ISMON:	start month of simulation	1 - DEVELOPMENT DEFINITION
IEDAY:	end day of simulation	31 - DEVELOPMENT DEFINITION
IEMON:	end month of simulation	12 - DEVELOPMENT DEFINITION
RECORD 2		
APPLIK:	scenario parameter file name	USER INPUT, FOCUS DEFINITION
RECORD 3		
CHEM:	substance parameter file name	USER INPUT
RECORD 4 - REPEAT UP TO (NUMBER OF SIMULATION YEARS)		
KLIMA:	climate file name	USER INPUT, FOCUS DEFINITION
RECORD 13		
NPLOTS:	Number of time series to be written to plotting file	22 - DEVELOPMENT DEFINITION
R ECORD 14 – REPEAT UP TO NPLTOTS		
PLNAME:	Identifier of time series	DEVELOPMENT DEFINITION
MODE:	Plotting mode	<u>Comment:</u> The time series identified here are
IARG:	Argument of variable identified in PLNAME	requirements for the graphical output and analysis within the Graphical User Interface. They cannot be changed.
CONST:	Constant used for unit conversion	

4. References

- Allan Walker und Anthony Barnes (1981): Simulation of herbicides in soils: a Revised Computer Model, Pestic. Sci., 12, 123-132.
- Carsel R.F., Smith C.N., Mulkey L.A., Dean J.D. and Jowise P. (1984): User's manual for the pesticide root zone model (PRZM) Release 1, EPA 600 / 3-84-109, U.S. Environmental Protection Agency, Athens, GA.
- Chen W. and R.J. Wagenet (1997): Description of Atrazine Transport in Soil with Heterogeneous Nonequilibrium Sorption. SOIL SCI. SOC. AM. J. 61 (2). pp. 360-371.
- FOCUS (2000): "FOCUS groundwater scenarios in the EU review of active substances" Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference Sanco/321/2000 rev.2, 202pp. http://focus.jrc.ec.europa.eu/gw/index.html
- FOCUS (2002): Generic guidance for FOCUS Groundwater scenarios", Version 1.1. http://focus.jrc.ec.europa.eu/gw/docs/Generic_guidance_for_FOCUS_groundwater_sce narios1.1.pdf
- FOCUS (2009): "Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU" Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/???/2009 version 1.
- Haith, D. A., Loehr, R.C. (1979): (Eds.) Effectiveness of Soil and Water Concervation Practices for Pollution Control. U.S. EPA, Athens, GA. USA, Report No. EPA-600/3-79-106.
- Hardy I., B. Gottesbüren, A. Huber, B. Jene, G. Reinken, H. Resseler (2008): Comparison of Lysimeter Results and Leaching Model Calculations for Regulatory Risk Assessment. Journal of Consumer Protection and Food Safety. 3, 364 – 375.
- Jene, B. (1998): PELMO 3.0 User manual extension, SLFA Neustadt/Weinstraße, Germany.
- Jene, B., Fent, G., and Kubiak, R. (1998): The movement of 14C-Benazolin and Bromide in large zero-tension outdoor lysimeters and the undisturbed field. In: Führ, F., Hance, R. J., Plimmer, J. R., and Nelson, J. O. (eds.) The lysimeter concept. Environmental behavior of pesticides. ACS symposium series 699, Amer Chem Soc, Washington, DC, USA, pp. 136 – 151.
- Jene, B., Erzgräber, B., Feyerabend, M., Fent, G., and Kubiak, R. (1999): Comparison of Bromide and Benazolin transport in the undisturbed field with simulations by the computer models PELMO and MACRO. In: Del Re, A. A. M., Brown, C., Capri, E., Errera, G., Evans, S. P., and Trevisan, M. (eds.) Human and environmental exposure to xenobiotics. Proc XI Symp Pest Chem pp. 131 – 142, La Goliardica Pavese, Pavia, Italy.
- Klein, M, Müller, M., Dust, M., Görlitz, G., Gottesbüren, B., Hassink, J., Kloskowski, R., Kubiak, R. Resseler, H., Schäfer, H., Stein, B. and Vereecken, H. (1997): Validation of the Pesticide Leaching Model PELMO using lysimeter studies performed for registration, Chemosphere, 35, 2563-2587.
- Klein, M. (1995): PELMO Pesticide Leaching Model, version 2.01. Fraunhofer-Institut für Umweltchemie und Ökotoxikologie, Schmallenberg, Germany.
- Klein, M. and H. Klöppel (1993): Usefulness of Models for the Prediction of Run-off Events
 Comparison with Experimental Data. The science of the total environment, Supplement 1421-1428.
- Klein, M. (2009): Implementation of kinetic sorption into PELMO, supported by ECPA, Fraunhofer-Institut Schmallenberg.

Michalski, B., Resseler, H., Aden, K., Dechet, F., Dust, M., Fischer, R., Gottesbüren, B., Holdt, G., Huber, A., Jene, B., Koch, W., Reinken, G., and Stein, B. (2004) Recommendations for simulation calculations of predicted environmental concentrations in groundwater (PECgw) in the National Authorisation Procedure. Nachrichtenbl Deutsch Pflanzenschutzd 56,193–201. http://www.bvl.bund.de/cln_027/nn_492042/DE/04__Pflanzenschutzmittel/11__Antrag stellerAnwender/02__Zulassungsverfahren/07__Naturhaushalt/naturhaush__node.html __nnn=true

- Scheffer, F., Schachtschabel, P., Blume, H.-P., Brümmer, G., Hartge, K.-H., Schwertmann, U., Fischer, W.R., Renger, M. and Strebel, O. (1989): Lehrbuch der Bodenkunde, Enke Verlag, Stuttgart, Germany.
- Streck, T., Poletika N.N., Jury, W.A., Farmer, W.J. (1995): Description of simazine transport with rate-limited, two-stage, linear and nonlinear sorption. Water Resources Research 31:811-822.
- Trevisan, M., Padovani, L., Jarvis, N., Roulier, S., Bouraoui, F., Klein, M., and Boesten, J. J.
 T. I. (2003): Validation status of the present PEC groundwater models. In: Del Re, A.
 A. M., Capri, E., Padovani, L., and Trevisan, M. (eds.) Pesticides in air, plant, soil and water systems. Proc XII Symposium Pesticide Chemistry pp. 933–940, La Goliardica Pavese, Pavia, Italy.
- van Genuchten, M.Th. and Wagenet, R.J. (1989): Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solution. Soil Science Society of America Journal 53:1303-1310.
- Vanclooster M., Armstrong A., Bouraoui F. Bidoglio G., Boesten J.J.T.I., Burauel P. Capri E. de Nie D., Fernandex E., Jarvis N., Jones A., Klein M., Leistra M., Linnemann V., Pineros Garcet J.D., Smelt J.H., Tiktak A., Trevisan M., van den Berg F., van der Linden A., Vereecken H., Wolters A.(2003a): Effective approaches for predicting environmental concentrations of pesticides: the APECOP Project. Proceedings of the XII Symposium Pesticide Chemsitry, June 4-6, 2003, Piacenza, Italien, 923-931.
- Vanclooster M., Armstrong A., Bouraoui F. Bidoglio G., Boesten J.J.T.I., Burauel P., Capri E. de Nie D., Fernandex E., Jarvis N., Jones A., Klein M., Leistra M., Linnemann V., Pineros Garcet J.D., Smelt J.H., Tiktak A. Trevisan M., van den Berg F., van der Linden A., Vereecken H., Wolters A. (2003b): APECOP: Effective Approaches for Assessing the Predicted Environmental Concentrations of Pesticides; Department of Environmental Sciences and Land Use Planning, Universite Catholique de Louvain: Louvain, Belgium.
- Vereecken, Kasteel, Herbst, Pütz, Vanderborght (2003): Modelling pesticide fate in soils: verification of local scale models and transfer from local to regional scale. Proc. XII Symposium Pesticide Chemistry, June 4-6, 2003, Piacenca.
- Walker A. (1978): Simulation of the persistence of eight soil-applied herbicides, Weed Research, 18, 305-313 (1978)
- Williams, J. R., H. D. Berndt (1977): Sediment Yield Prediction on Watershed Hydrology. Transactions of the American Society of Agricultural Engineers, 20, 1100-1104.
- Wolters A., Linnemann V., Herbst H., Klein M., Schäffer A., Vereecken H. (2003): Pesticide Volatilisation from soil: Lysimeter measurements versus predicitions of European registration models. J. Environm. Qual 32:1183-1193.
- Wolters, A., Leistra, M., Linnemann, V., Klein, M. Schäffer, A. and Harry Vereecken (2004): Pesticide Volatilization from Plants: Improvement of the PEC model PELMO based on a boundary-layer concept, Environ. Sci. Technol. 38, 2885-2893.