Test results for FOCUS_TOXSWA_4.4.3 Date: 3-April-2015 Tester: Wim Beltman Standard <u>drainage</u> and <u>runoff</u> input files are used to test the new TOXSWA version¹. These are: - 6 *.m2t files and 4 *.p2t files, - representing output for 3 applications of 1 kg/ha - of FOCUS Compound D_sw - to winter cereals (maize for R2) - with the first appln at the day around emergence (appln window for PAT: emergence-5 up to emergence+50 d, - appln interval 6 d, - application method: ground spray). They can be found at the home page of the workgroup. The *.m2t and *.p2t file need to be copied into the corresponding SWASHprojects folder for MACRO and PRZM, respectively. Change the runid's of these files to the runid's necessary for running TOXSWA (see the exact path in the corresponding txw input file). These 'average' drainage and runoff fluxes are coupled to a less and a more persistent compound in water, respectively FOCUS Compound A_sw and H_sw. So create 2 projects in SWASH with: - compound A_sw and compound H_sw - winter cereals (maize for R2) - 3 applications of 1 kg/ha - with the first appln at the day around emergence (appln window for PAT: emergence-5 up to emergence+50 d, - appln interval 6 d - application method: ground spray - 1. Model output for 3 applications of 1 kg/ha of FOCUS Compound A_sw to winter cereals (maize for R2) with the first appln at the day around emergence | Scenario | Appln date | Water | | Sediment | |-----------|---|----------------------|------------------|----------------------| | | (not | Global max (µg/L) | TWAC 28 d (µg/L) | Global max (µg/L) | | | changed) | [Date] | | [Date] | | D1-Ditch | 3-Oct-1982
23-Oct-1982
5-Nov-1982 | 225.3
22-nov-1982 | 144.9 | 57.59
25-nov-1982 | | D1-Stream | 3-Oct-1982
23-Oct-1982
5-Nov-1982 | 157.5
13-nov-1982 | 101.0 | 39.10
25-nov-1982 | | D2-Ditch | 3-Nov-1986
28-Nov-1986
8-Dec-1986 | 465.3
12-dec-1986 | 156.6 | 69.11
15-dec-1986 | | D2-Stream | 3-Nov-1986
28-Nov-1986
8-Dec-1986 | 329.2
11-dec-1986 | 102.1 | 44.05
15-dec-1986 | ¹ Please note that these runs are intended as a test for the TOXSWA software only. They do not correspond to sensible, consistent step 3 FOCUS runs that can be used for risk assessment purposes. (E.g. because PRZM and MACRO do calculations for a pesticide with D-sw properties, while TOXSWA performs calculations for a pesticide with A-sw or H-sw properties.) | D3-Ditch | 22-Nov-1992
28-Nov-1992
10-Dec-1992 | 29.89
22-nov-1992 | 25.77 | 8.797
10-dec-1992 | |-----------|---|----------------------|--------|-----------------------| | D4-Pond | 28-Sep-1985
4-Oct-1985
26-Oct-1985 | 31.20
21-dec-1985 | 23.76 | 9.367
23-dec-1985 | | D4-Stream | 28-Sep-1985
4-Oct-1985
26-Oct-1985 | 102.2
9-dec-1985 | 75.33 | 26.29
21-dec-1985 | | D5-Pond | 27-Nov-1978
18-Dec-1978
01-Jan-1979 | 42.09
12-feb-1979 | 18.31 | 9.965
14-feb-1979 | | D5-Stream | 27-Nov-1978
18-Dec-1978
01-Jan-1979 | 70.35
11-feb-1979 | 40.86 | 17.58
13-feb-1979 | | D6-Ditch | 6-Dec-1986
30-Dec-1986
14-Jan-1987 | 156.2
19-jan-1987 | 26.26 | 15.29
19-jan-1987 | | R1-Pond | 14-Nov-1978
20-Nov-1978
27-Nov-1978 | 1.100
25-nov-1978 | 0.2505 | 0.1626
28-nov-1978 | | R1-Stream | 14-Nov-1978
20-Nov-1978
27-Nov-1978 | 91.23
25-nov-1978 | 1.488 | 5.641
25-nov-1978 | | R2-Stream | 26-Apr-1977
7-May-1977
20-May-1977 | 35.34
13-may-1977 | 1.030 | 2.833
13-may-1977 | | R3-Stream | 5-Dec-1980
11-Dec-1980
20-Dec-1980 | 157.7
16-dec-1980 | 4.71 | 10.52
16-dec-1980 | | R4-Stream | 5-Nov-1979
10-Dec-1979
24-Dec-1979 | 10.62
21-dec-1979 | 0.2460 | 0.7535
21-dec-1979 | 2. Model output for 3 applications of 1 kg/ha of FOCUS Compound H_sw to winter cereals (maize for R2) with the first appln at the day around emergence | Scenario | Appln date | Water | | Sediment | |-----------|----------------------------|-------------------|------------------|-------------------| | | (not | Global max (µg/L) | TWAC 28 d (µg/L) | Global max (µg/L) | | | changed) | [Date] | | [Date] | | D1-Ditch | 3-Oct-1982 | 246.9 | 164.8 | 222.8 | | | 23-Oct-1982
5-Nov-1982 | 20-nov-1982 | | 27-nov-1982 | | D1-Stream | 3-Oct-1982 | 158.3 | 102.2 | 126.2 | | | 23-Oct-1982
5-Nov-1982 | 13-nov-1982 | | 27-nov-1982 | | D2-Ditch | 3-Nov-1986 | 469.1 | 175.3 | 259.9 | | | 28-Nov-1986
8-Dec-1986 | 12-dec-1986 | | 31-dec-1986 | | D2-Stream | 3-Nov-1986 | 329.7 | 102.9 | 153.3 | | | 28-Nov-1986
8-Dec-1986 | 11-dec-1986 | | 31-dec-1986 | | D3-Ditch | 22-Nov-1992 | 33.15 | 30.05 | 88.79 | | | 28-Nov-1992
10-Dec-1992 | 22-nov-1992 | | 11-jan-1993 | | D4-Pond | 28-Sep-1985 | 127.1 | 123.3 | 286.9 | | | 4-Oct-1985
26-Oct-1985 | 31-jan-1986 | | 5-apr-1986 | | D4-Stream | 28-Sep-1985 | 102.3 | 75.58 | 110.5 | | | 4-Oct-1985
26-Oct-1985 | 9-dec-1985 | | 30-jan-1986 | | D5-Pond | 27-Nov-1978 | 110.7 | 106.1 | 232.2 | | | 18-Dec-1978
01-Jan-1979 | 17-feb-1979 | | 01-may-1979 | | D5-Stream | 27-Nov-1978 | 70.42 | 41.03 | 72.71 | | | 18-Dec-1978
01-Jan-1979 | 11-feb-1979 | | 11-apr-1979 | | D6-Ditch | 6-Dec-1986 | 157.2 | 28.96 | 58.96 | | | 30-Dec-1986
14-Jan-1987 | 19-jan-1987 | | 20-jan-1987 | | R1-Pond | 14-Nov-1978
20-Nov-1978
27-Nov-1978 | 1.462
27-nov-1978 | 1.281 | 1.845
02-feb-1979 | |-----------|---|----------------------|--------|----------------------| | R1-Stream | 14-Nov-1978
20-Nov-1978
27-Nov-1978 | 91.61
25-nov-1978 | 1.5010 | 12.26
25-nov-1978 | | R2-Stream | 26-Apr-1977
7-May-1977
20-May-1977 | 35.72
13-may-1977 | 1.047 | 6.492
13-may-1977 | | R3-Stream | 5-Dec-1980
11-Dec-1980
20-Dec-1980 | 158.4
16-dec-1980 | 4.806 | 23.18
16-dec-1980 | | R4-Stream | 5-Nov-1979
10-Dec-1979
24-Dec-1979 | 10.66
21-dec-1979 | 0.2489 | 1.670
21-dec-1979 | Table 3 shows the global maximum concentrations in water calculated by v.3.3.1 and by 4.4.3. of compound A from Table 1, and the percentage difference in concentration. Table 4 does the same for compound H from Table 2. 3. Global maximum concentrations calculated by version 3.3.1 and version 4.4.3 of compound A_sw (from Table 1). The concentration difference is given as percentage. | Scenario | Global maxim | Global maximum in water (µg/L) | | | |-----------|--------------|--------------------------------|------|--| | | v.3.3.1 | v.4.4.3 | | | | D1-Ditch | 225.322 | 225.3 | 0.0 | | | D1-Stream | 157.715 | 157.5 | -0.1 | | | D2-Ditch | 466.838 | 465.3 | -0.1 | | | D2-Stream | 333.303 | 329.2 | -1.2 | | | D3-Ditch | 29.885 | 29.89 | 0.0 | | | D4-Pond | 31.201 | 31.20 | 0.0 | | | D4-Stream | 102.111 | 102.2 | 0.1 | | | D5-Pond | 42.088 | 42.09 | 0.0 | | | D5-Stream | 70.481 | 70.35 | -0.2 | | | D6-Ditch | 156.174 | 156.2 | 0.0 | | | R1-Pond | 1.100 | 1.100 | 0.0 | | | R1-Stream | 92.865 | 91.23 | -1.8 | | | R2-Stream | 35.806 | 35.34 | -1.3 | | | R3-Stream | 161.811 | 157.7 | -2.5 | | | R4-Stream | 10.770 | 10.62 | -1.4 | | 4. Global maximum concentrations calculated by version 3.3.1 and version 4.4.3 of compound H_sw (from Table 2). The concentration difference is given as percentage. | Scenario | Global maximur | Difference (%) | | |-----------|----------------|----------------|------| | | v.3.3.1 | v.4.4.3 | | | D1-Ditch | 246.886 | 246.8 | 0.0 | | D1-Stream | 158.426 | 158.3 | -0.1 | | D2-Ditch | 470.635 | 469.0 | -0.3 | | D2-Stream | 333.837 | 329.7 | -1.2 | | D3-Ditch | 33.145 | 33.15 | 0.0 | | D4-Pond | 127.139 | 127.1 | 0.0 | | D4-Stream | 102.289 | 102.3 | 0.0 | | D5-Pond | 110.710 | 110.7 | 0.0 | | D5-Stream | 70.554 | 70.42 | -0.2 | | D6-Ditch | 157.164 | 157.2 | 0.0 | | R1-Pond | 1.462 | 1.462 | 0.0 | | R1-Stream | 93.610 | 91.61 | -2.1 | | R2-Stream | 36.198 | 35.72 | -1.3 | | R3-Stream | 163.022 | 158.4 | -2.8 | | R4-Stream | 10.816 | 10.66 | -1.4 | The global maximum concentrations in water of compound A (Table 3) and compound H (Table 4) differ maximally 2.8%. The differences in global maximum concentrations are due to a slight difference in the numerical approximations of the water depth of the two versions (see Differences between FOCUS_TOXSWA v.3.3.1 and FOCUS_TOXSWA v.4.4.3, item *m4*). Only the TWA28 of the R3-Stream differs, for both compounds. The differences of 0.6% and of 0.7% are also due to the slight difference in the numerical approximations of the water depth of the two versions (see Differences between FOCUS_TOXSWA v.3.3.1 and FOCUS_TOXSWA v.4.4.3, item *m4*). The global maximum concentration in sediment of compound A found for the D6-Ditch scenario is due to a typo in the Test results of FOCUS_TOXSWA 3.3.1. Other differences in global maximum concentrations in sediment are less than 1% for all other calculations. These small differences are a consequence of the differences in concentration in water for those runs (see above). The concentration in water determines how much of the substance diffuses between water and sediment.