

Experiences using spatially distributed models in Austria

Michael Stemmer

Division of Food Security, Institute for Plant Protection Products

Content

- Introduction
- Model parameterization & aggregation
- Model validation
- GeoPEARL as a regulatory tool
- GeoPEARL as a predictive tool
- Conclusions

Introduction

Project

- Runtime 2009 2012
- Founded by Ministry (Water Management) & AGES

Project team

- AGES
- Federal Office of Water Management
- PBL Netherlands Environmental Assessment Agency (consultancy, Aaldrik Tiktak)

Project report

- https://www.bmnt.gv.at/wasser/wasserqualitaet/geopearl.html
- In German, only

Introduction

Intention 1 – AGES (Risk assessment/management)

- Check representativeness of FOCUS scenarios
- Check GeoPEARL as a higher tier (refinement) option

Intention 2 – Ministry (Water Management)

 Identification of actives and metabolites posing a risk to groundwater (what, where and when?)

Model parameterization & aggregation Soil properties & hydrology

National soil data base

- ~ 11,000 soil profiles linked to ~ 500,000 polygons
- Profile depths up to 1 m and more
- Measured data on organic matter content, texture, pH
- Additional work needed to parameterize PEARL
 - Many decisions to be made expert judgment!

Model parameterization & aggregation Soil properties & hydrology

Soil hydrological parameters (Mualem-Van Genuchten)

- Several PTF available which one is most appropriate?
- Wösten et al. (1999) vs. Rosetta (Schaap et al., 2001)
- Minor impact for humid areas, stronger impact for less humid areas
- Factor on PEC_{GW} ~ 1.5

Evapotranspiration from bare soil

- Different options in PEARL
- Strong impact for less humid areas
- Factor on PEC_{GW} ~ 2

Model parameterization & aggregation

Weather data

- \frown Data from **national weather stations** (1990 2010, n = 55)
- - Regional scaling necessary
 - Otherwise transitions in PEC_{GW} clearly visible

MARS-50 data (JRC)

- Deviating from national data
- Strange shifts in data
- New MARS-25 data have not been checked (not available)

Model parameterization & aggregation

Crop data & irrigation

Crop parameterisation

- FOCUS Kremsmünster without changes
- No green cover crops, no crop rotations

Crop area of interest

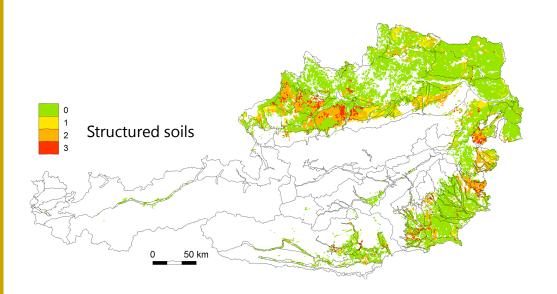
- National high resolution crop maps (field scale)
- CAPRI data may strongly deviate (depending on crop)

Irrigation

- National high resolution irrigation map (field scale)
- Regional on/off switch for irrigated crops in GeoPEARL

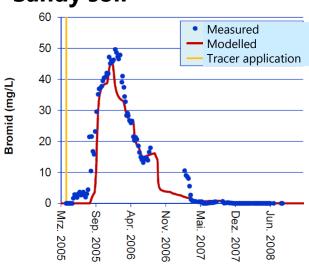
Model parameterization & aggregation

AGES

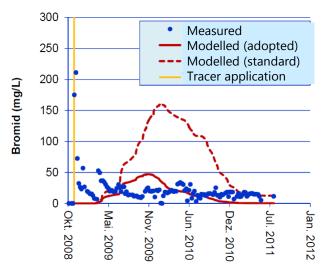

Aggregation

- Necessary to reduce computation run time
- Two methods (at least)
 - Vulnerability rank (implemented in Dutch version)
 - does not work for non-ordinary behaving substances
 - Clustering according to soil and weather properties
 - works in any case
- 25,000 km² → 6,000 plots → ~ 500 "representative plots" for each crop (finally used in calculation, extrapolated to total crop area)
- Loss in information acceptable

Model validation


GeoPEARL vs. lysimeter

- Overall water balance OK
- **Water flow** (bromide tracer)
 - Sufficient for non-structured soils
 - Poor in structured soils

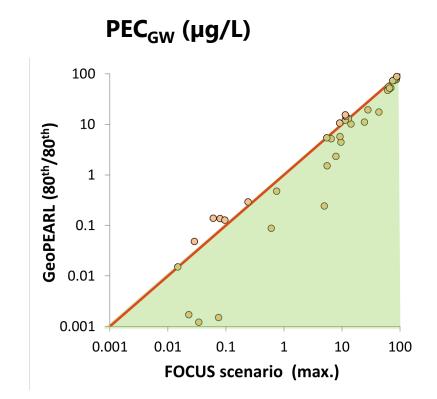


Structured soil

GeoPEARL as a regulatory tool

GeoPEARL vs. FOCUS standard scenarios

Standard runs


- Dummy substances
- Maize, winter cereals, winter rape, sugar beets, vines

FOCUS standard scenarios

CH, HA, KR, OK

🦰 Major outcome

 Max. PEC_{GW} of FOCUS standard scenarios close to 80th/80th percentile PEC_{GW} in GeoPEARL (or even higher)

GeoPEARL as a regulatory tool

Potential use of GeoPEARL in regulatory world

GeoPEARL as a "higher tier option"?

- Limited use for major crops (same results)
- Refinement option for crops grown in less humid areas (east of Austria) or for substances with properties depending on soil properties

Risk management

- Regional mitigation not foreseen
- Finally "no strong pressure" to implement GeoPEARL in authorization process
 - FOCUS standard scenarios considered sufficient robust

AGES

From soil pore water to groundwater

GeoPEARL overestimation concentrations measured in groundwater monitoring (WFD)

- No groundwater hydrology implemented
- Untreated area not accounted for
- No information available on regional use (rates)
 potential use conditions (maximum rate everywhere)
- Very limited use of GeoPEARL as a predictive tool for concentrations found in groundwater

Thow to account for untreated area within a 1D approach?

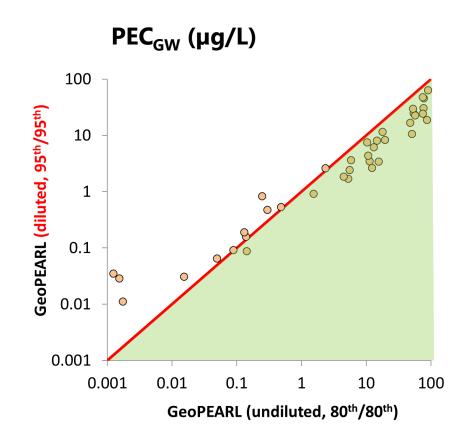
 Regional dilution of PEC_{GW} assuming that groundwater recharge of untreated areas equals groundwater recharge of treated areas

AGES

From soil pore water to groundwater

GeoPEARL with dilution factor

- Reduction in 80th/80th percentile PEC_{GW} by a factor of 3 to 15 (depending on crop)
- PEC_{GW} much closer to results from groundwater monitoring (still conservative)


But

- Unspecified "protection goal" in AT: "All groundwater is drinking water"
- 80th/80th percentile approach not defendable on groundwater level
- → Shift in overall percentile necessary

From soil pore water to groundwater

Undiluted 80th/80th percentile PEC_{GW} equals diluted 95th/95th percentile PEC_{GW} in many cases

AGES

From soil pore water to groundwater

- Is regional dilution a valuable refinement (higher tier) option in the authorization process?
 - Simple regional dilution factor needs validation with more sophisticated models (e.g. 2D/3D models)
 - Decrease in PEC_{GW} via dilution counteracts increase in overall percentile necessary at "groundwater level"
 - No clear protection goal at "groundwater level" (which overall percentile)

Conclusions

Data quality

- National data usually better than EU-wide data
- Accurate data quality important on national/regional level

Model parameterisation

- Several expert judgments to be made (with minor/major impact)
- Correct water balance in less humid areas particularly critical

Model acceptance not necessarily given

- Data quality may not be not considered adequate
- No preferential flow included (structured soils)
- Regional uncertainties in substance properties not accounted for

Conclusions

Limited use of GeoPEARL as a higher tier option

- 80th/80th percentile PEC_{GW} for major crops close to FOCUS standard scenarios (max. of CH, HA, KR & OK)
- Regional mitigation not foreseen in Austria

Regional refinement (dilution due to untreated area)

- PEC_{GW} closer to groundwater monitoring results
- Further verification needed (e.g. 2D/3D models)

Conclusions

Model acceptance outside of the "pesticide regulatory world" is a difficult task

- Different "languages", different "thinking"
- On groundwater level overall 90th percentile approach "not acceptable" (but no clear protection goal given)
- Groundwater monitoring results often considered the benchmark for a "correct leaching model"

Michael STEMMER

Regulatory environmental risk assessment

AGES – Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH

Spargelfeldstrasse 191 A-1220 Vienna

michael.stemmer@ages.at

www.ages.at