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Summary

A range of continental-scale soil datasets exists in Europe with different spatial representation and based on
different principles. We developed comprehensive pedotransfer functions (PTFs) for applications principally
on spatial datasets with continental coverage. The PTF development included the prediction of soil water
retention at various matric potentials and prediction of parameters to characterize soil moisture retention and
the hydraulic conductivity curve (MRC and HCC) of European soils. We developed PTFs with a hierarchical
approach, determined by the input requirements. The PTFs were derived by using three statistical methods: (i)
linear regression where there were quantitative input variables, (ii) a regression tree for qualitative, quantitative
and mixed types of information and (iii) mean statistics of developer-defined soil groups (class PTF) when
only qualitative input parameters were available. Data of the recently established European Hydropedological
Data Inventory (EU-HYDI), which holds the most comprehensive geographical and thematic coverage of
hydro-pedological data in Europe, were used to train and test the PTFs. The applied modelling techniques and the
EU-HYDI allowed the development of hydraulic PTFs that are more reliable and applicable for a greater variety
of input parameters than those previously available for Europe. Therefore the new set of PTFs offers tailored
advanced tools for a wide range of applications in the continent.

Introduction

Numerous pedotransfer functions (PTFs) have been developed in
Europe in recent decades (Vereecken et al., 1989, 1990; Børgesen
& Schaap, 2005; Baker & Ellison, 2008; Weynants et al., 2009).
Many of them are very accurate but applicable only to limited
areas. These PTFs therefore have limited validity when considered
for continental scale applications. Up to now, continuous and
class PTFs developed from the HYPRES data-base (Wösten et al.,
1999) are the only ones intended and available to predict soil
hydraulic properties for continental scale applications in Europe.
However, the HYPRES-based PTFs have a number of limitations.
For example, HYPRES holds data mainly from Western European
countries and is not representative of Central and Eastern Europe.
Other shortcomings include unpublished accuracy figures and the
absence of the assessment of the importance of variables for
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restricting inputs for those which improve predictions. In addition,
the HYPRES-based PTFs do not consider chemical properties,
which may improve hydraulic predictions in certain cases.

Since the publication of the HYPRES-based PTFs, major
developments have occurred in the availability of measured
hydro-pedological and general soil survey data, as well as in mod-
elling procedures and tools. Today a wider range of soil properties
can be considered for model development (new training datasets)
and implementation, as in new digital soil property maps (Adhikari
et al., 2013; Arrouays et al., 2014).

Soil hydraulic parameters needed in environmental, hydrologi-
cal or land-surface modelling vary according to the model used.
Some models require knowledge of the whole moisture retention
curve (MRC) (MohidLand, SWAP, CLM, HYDRUS). Other mod-
els, for example the SWAT model, require water retention values
at given matric potentials. Direct point predictions for given matric
potentials can lead to more accurate estimations than if water reten-
tion values of these matric potentials are derived from predicted
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Table 1 Continental soil datasets in Europe available or foreseen for implementing soil hydraulic PTFs in a spatial context

Name
abbreviation Full name Type of data layer Vertical coverage Reference

SGDBE Soil Geographical Database
for Eurasia

Continuous Topsoil and subsoil Lambert et al. (2003)

HWSD Harmonized World Soil
Database

Continuous Topsoil and subsoil FAO/IIASA/ISRIC/ISS-
CAS/JRC (2012)

GSM GlobalSoilMap.Net Continuous (foreseen) Topsoil and subsoil GlobalSoilMap.net (2011)
SPADE Soil Profile Analytical

Database for Europe
Point Topsoil and subsoil Hiederer et al. (2006)

OCTOP Map of Topsoil Organic
Carbon in Europe

Continuous Topsoil Jones et al. (2005)

LUCAS Topsoil database of the Land
Use/Cover Area frame
Statistical Survey

Point (derived continuous
layers foreseen)

Topsoil Tóth et al. (2013)

MRCs (parameter estimation) (Pachepsky et al., 1996; Børgesen &
Schaap, 2005). Therefore it is important to have both point predic-
tions and parameter estimations.

It is also known that the performance of prediction models is
highly dependent on the characteristics of the data (number and
kind of measured properties, sample size and heterogeneity) used
for their development. Nemes et al. (2003) underlined the need
to assemble a comprehensive dataset containing soil taxonomic,
chemical, physical, hydrological and land cover/use data in Europe.
New predictions should also consider the underlying characteris-
tics and spatial extent of the information that is readily available
or foreseen, such as the European coverage of the upcoming Glob-
alSoilMap (Arrouays et al., 2014), for spatial applications of the
PTFs. The recent construction of the European Hydropedologi-
cal Data Inventory (EU-HYDI), which gathers contributions from
18 European countries (Weynants et al., 2013), has provided the
opportunity to establish new PTFs based on the above principles,
including the consideration of all soil characteristics available on
continental maps.

The aim of this study is to provide point and parametric PTFs
of soil hydraulic properties for applications in Europe with a
hierarchical input data approach. A systematic assessment of
data available for continental soil hydrological applications was
performed. We focused on predictions based on input parameters
that are available in continental-scale spatial layers in Europe, thus
enabling users to implement the functions at this scale. A series
of statistical methods was tested and applied for the development
of PTFs. Results of the most reliable methods are presented in a
hierarchical structure by the extent of requirement for inputs.

Materials and methods

This section provides only the essential features of the material and
methods used and further details are given in File S1.

Dataset

PTFs were developed with data from EU-HYDI (Weynants et al.,
2013). The EU-HYDI was built as a collective effort of 29 institutes

in 18 European countries and contains information on taxonomic,
chemical and physical soil properties and data on land use for
18 537 unique soil samples from 6460 soil profiles across the
continent. Weynants et al. (2013) provide full details of the dataset,
including methodology, characteristics of the samples and the data
harmonization that took place prior to its release. File S1 describes
the preparation and filtering of the data for the current analysis. For
the predictions we used variables available in EU-HYDI that are
also available in possible implementation datasets (Table 1). The
order of soil input parameters to be included in models was based on
their availability for larger European areas, such as river catchments
or geographical regions. It is noted, that application of the PTFs
developed is not limited to the databases listed in Table 1. The new
PTFs can also be applied for other soil data, such as continuous
maps or profile information from within Europe, as long as the
necessary inputs exist.

The dataset, which was used for developing PTFs and assessing
their reliabilities, was also derived from EU-HYDI. It was split by
random sampling into training sets to derive PTFs and test sets to
assess their reliability. Two types of test sets were created for each
predicted hydraulic property for the comparison of derived PTFs;
one for testing predictions from physical properties and organic car-
bon content (OC) (TEST_BASIC), and one for testing predictions
using additional chemical properties (TEST_CHEM+). When addi-
tional chemical parameters were not important for a given method,
the models developed were always tested against the TEST_BASIC
data. Sample sizes varied according to hydraulic properties and
were different for the TEST_BASIC and TEST_CHEM+ test sets.
A description of the data used to derive PTFs for MRC predictions
is given in Table 2. Figure 1 shows the number of samples by cli-
matic zones in the training- and test datasets used to derive PTFs to
predict MRC and to calculate their reliability. A summary of tested
predictors and statistical approaches in training and test sets is given
in Table 3.

To enable a comparison of the reliability of the new EU-HYDI and
the predecessor HYPRES-based parameter estimation models, we
eliminated those samples from the TEST_BASIC test set that were
transferred from the HYPRES to the EU-HYDI database. This was
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Table 2 Descriptive statistics of training and test sets (TEST_BASIC and TEST_CHEM+) used to derive PTFs and calculate their reliability for the prediction
of the moisture retention curve (MRC)a

Sand Silt Clay Bulk density Organic carbon Calcium carbonate pH in water
Descriptive statistic / % / % / % / g cm−3 / % / % / −

Training N 4749 4749 4749 4830 3943 1263 1527
Minimum 0 0 0 0.09 0 0 3.50
Maximum 100 86.80 91.60 2.02 52.8 80 10.62
Mean 40.82 37.25 21.92 1.39 2.9 7.92 6.98
SD 29.00 20.63 17.09 0.29 8.0 13.01 1.19
Median 37.06 35.20 17.80 1.44 1.0 0.40 7.10

TEST_BASIC N 1619 1619 1619 1619 1619 288 288
Minimum 0 0 0 0.21 0 0 4.50
Maximum 100 84.80 88.50 1.97 33.7 65.00 10.46
Mean 39.61 37.19 23.21 1.44 1.4 8.02 7.51
SD 28.89 20.18 16.98 0.21 1.8 13.02 1.08
Median 33.70 36.00 19.70 1.45 1.0 0.60 7.70

TEST_CHEM+ N 288 288 288 288 288 288 288
Minimum 0.80 3.10 1.00 0.88 0 0 4.50
Maximum 94.80 74.90 66.30 1.85 3.8 65.00 10.46
Mean 37.99 37.47 24.55 1.46 1.0 8.02 7.51
SD 25.76 17.86 13.21 0.17 0.7 13.02 1.08
Median 33.33 36.61 23.24 1.47 0.8 0.60 7.70

aA full description of the whole EU-HYDI data-base can be found in Weynants et al. (2013). The TEST_BASIC dataset includes the TEST_CHEM+ dataset.

TEST_BASIC

TEST_CHEM+

Climatic Areas of Europe 1:15,000,000

Subpolar
Boreal
Boreal to Temperate
Temperate to Continental
Mediterranean

Number of samples per test data−set
0 1000 2000 3000 4000 5000

FAO_MOD+T/S

PSD+T/S+OC

PSD+T/S+OC+BD

PSD+T/S+OC+BD
+PH+CaCO3+CEC

Number of samples per training data−set
0 1000 2000 3000 4000 5000

Figure 1 Number of samples by climatic zones (Rainer & Richter, 2005)
in test and training datasets used to derive PTFs for the prediction of MRC.

necessary because HYPRES’s models were developed on the full
dataset available at the time, and reliability can only be tested on
independent data.

Predicted soil hydraulic properties

We developed point predictions to calculate moisture retention (𝜃)
at three given matric potential values (h), namely at saturation (𝜃S),

field capacity (𝜃FC) and wilting point (𝜃WP), and also for saturated
hydraulic conductivity (KS). In addition, we made parameter esti-
mations to describe the MRC and the HCC to provide PTFs that are
applicable in a range of European- and regional-scale models.

Saturated water content. Saturated water content (𝜃S) was pre-
dicted from data measured at 0 cm matric potential.

Water content at field capacity. The traditional definition of water
content at field capacity (𝜃FC) states that it is the water content that
can be held against gravity 2 or 3 days after wetting the soil profile
(Veihmeyer & Hendrickson, 1931). Because of this definition, 𝜃FC

can only be approximated to a matric potential value, for which the
reference value varies (−50, −60, −100 or −330 cm), depending on
traditions and application needs throughout the world.

As a commonly used modelling application, the SWAT hydro-
logical model uses −330 cm matric potential to define 𝜃FC. Because
the SWAT model is used in the MyWater project (FP7/2007–2013),
into which the new PTFs feed directly, we predicted water content at
this matric potential as 𝜃FC. Should 𝜃FC at a different matric poten-
tial be required, we recommend that the water content at the desired
matric potential is calculated from the MRC predictions, which we
also describe. File S1 provides additional details on data preparation
for the 𝜃FC predictions.

Water content at wilting point. We refer to the wilting point (𝜃WP)
as the soil moisture content at −15 848 cm matric potential (pF 4.2).
The measurement closest to this matric potential was chosen from
the range between −15 000 and −16 000 cm, which was adjusted to
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Table 3 Investigated input parameters for PTFs described by data source, available training and test datasets and the statistical methods tested in the
development of PTFs

Number of samples (per predicted propertiesb)

Input parameters for PTFsa Related European soil databases 𝜃S 𝜃FC 𝜃WP KS VG MVG Method testedc

FAO_MOD+T/S SGDBE Training 3594 2921 6074 3206 4906 860 RT
MS

FAO_MOD+T/S+OC SGDBE+OCTOP Training 3204 2437 5608 2669 3943 528 RT
USDA+T/S – Training 3594 2921 6074 3206 4906 860 RT

MS
PSD+T/S+OC LUCAS/GSM/HWSD Training 3073 2356 5530 2628 3786 407 RT

LR
PSD+T/S+OC+ pH+

CaCO3 +CEC
LUCAS/HWSD Training 369 657 691 401 671 135 RT

LR
PSD+T/S+OC+BD GSM/HWSD Training 3065 2351 5512 2616 3773 404 RT

LR
PSD+T/S+OC+BD+ pH GSM/HWSD Training 1142 1933 2612 864 1713 223 RT

LR
PSD+T/S+OC+BD+

pH+CaCO3 +CEC
HWSD or SPADE/M or any

other relevant data-set
Training 369 655 687 401 670 134 RT

LR
(x) TEST_BASICd 1311 1005 2357 1121 1619 176
(x) TEST_CHEM+ e 156 280 295 169 288 57

aFAO_MOD, modified FAO texture class; T/S, topsoil and subsoil; OC, organic carbon content (100 g g−1); PSD, particle size distribution (sand, 50–2000 μm;
silt, 2–50 μm; clay, < 2 μm (100 g g−1)); CaCO3, calcium carbonate content (100 g g−1); CEC, cation exchange capacity (cmol (+) kg−1); BD, bulk density
(g cm−3)
b
𝜃S, saturated water content; 𝜃FC, water content at field capacity (pF 2.5); 𝜃WP, water content at wilting point (pF 4.2); KS, saturated hydraulic conductivity

(cm day−1); VG, parameters of the van Genuchten model; MVG, parameters of the Mualem – van Genuchten model.
cRT, regression tree; MS, mean statistics to derive class PTFs; LR, linear regression. Prediction of VG parameters was derived by mRT: multivariate regression
tree as well.
dTEST_BASIC: samples having measured sand, silt and clay content, bulk density, topsoil/subsoil distinction and organic carbon content.
eTEST_CHEM+: samples with measured sand, silt and clay content, bulk density, topsoil/subsoil distinction, organic carbon content, pH, calcium carbonate
content and cation exchange capacity.

equal pF4.2: this range of matric potentials is available for many
samples.

Saturated hydraulic conductivity. We used hydraulic conductiv-
ities measured at 0 cm matric potential to predict the saturated
hydraulic conductivity (KS), and used the common base logarithm
of KS (log10(KS)) as the dependent variable (Vereecken et al., 1990;
Lilly et al., 2008; Weynants et al., 2009).

Parameters of the Mualem-van Genuchten model. For the
description of the full range of the moisture retention and hydraulic
conductivity curve (MRC and HCC), the classic Mualem-van
Genuchten model was used (MVG; Mualem, 1976; van Genuchten,
1980). For the estimation of the MRC and the HCC we predicted
the 𝜃r, 𝜃s, 𝛼, n, K0, L parameters of the MVG model. Details of the
calculation and basis for this model are included in File S1. The
filtered data were used to fit the Mualem-van Genuchten model
sequentially by using the R package optimx as an interface for
algorithm nlminb (unconstrained and box-constrained optimization
using PORT routines; Gay, 1990).

Methods to build pedotransfer functions

For the targeted soil hydraulic properties, a series of pedotrans-
fer functions (PTFs) were developed in a hierarchical approach,

considering different sets of descriptive variables. Possible inputs
for hydraulic predictions can be of three types: quantitative (contin-
uous), qualitative (categorical: nominal or ordinal) or mixed (both
quantitative and qualitative).

Because of the nature of the input variables, three types of
prediction methods (statistical approaches) were applied to derive
quantitative hydraulic properties: (i) mean statistics (MS) with
qualitative independent variables, (ii) linear regression (LR) with
quantitative independent variables or (iii) univariate or multivariate
regression trees (RT, mRT) with quantitative, qualitative or mixed
independent variables. Table 3 shows the statistical approaches
tested for each set of available training data. All statistical analyses
were performed in R statistics, version 3.0.1 (R Core Team,
2013).

Mean statistics for class PTFs. When qualitative input parameters
with a reasonable number of categories (classes) were available,
class PTFs, referred to by Wösten et al. (1999) in their statistical
approach as MS, were also used to predict soil hydraulic properties.
For point estimations, we calculated the geometric mean value of
𝜃S, 𝜃FC and 𝜃WP and median of log10KS by soil texture classes with
a topsoil/subsoil distinction (T/S) within each class.

The MSs for parameter estimations were derived by directly
fitting VG and MVG to all measured 𝜃-h and K-h data available for
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each combination of texture class and T/S. The objective function
was the sum of all squared residuals. Class PTFs (MSs) were
developed for both modified FAO (FAO_MOD) (CEC, 1985) and
USDA (Soil Survey Staff, 1975) texture classes as well as organic
soils, after Wösten et al. (1999).

Univariate and multivariate regression trees. A regression tree
is a type of decision tree that is implemented in statistical programs
as part of the Classification and Regression Trees (CART) module.
In decision trees the aim is to partition the data into groups that are
as homogenous as possible, in terms of the dependent variable(s).
The CART module can use both continuous and categorical (ordi-
nal or nominal) dependent and independent variables. We refer to
regression trees (RTs) as those decision tree models where depen-
dent variables are continuous-type hydraulic properties. For point
predictions we built univariate RTs that provide an estimate for a
single output variable. For parameter estimations, except for uni-
variate RTs for each parameter, we also derived predictions with
multivariate regression trees (mRT), which allow a joint estima-
tion of MVG parameters that are known to be correlated. A detailed
description of the application of the mRT approach is provided in
File S1.

Linear regression. When we used continuous predictors only,
along with the T/S, we fitted multiple linear regression models to
the data. T/S was included in the model as a dummy independent
variable with two values (topsoil= 1, subsoil= 0). Linear regression
has the advantage of being easy to implement, because a unique
equation results for each predicted variable, and their prediction
performance was similar to regression trees for point predictions
(Tóth et al., 2012). Different types of linear regressions (linear
regression using primary data (LR), linear regression using primary
and transformed data and their interactions (LRt), and linear
regression using primary and/or transformed input parameters,
whichever was closest to normal distribution (LRt2)), were tested;
a full description of the approach to fitting linear regression models
is provided in File S1.

Model performance measures

Performance of the developed models was characterized by their
reliability, as indicated by the difference between measured and
predicted values. The root mean square error (RMSE) was used
for point and parameter estimations (cm3 cm−3 for water reten-
tion, log10 (cm day−1) for hydraulic conductivity). In addition,
the mean error (ME) was also used for parameter estimations.
To define the most reliable PTFs, simple pair-wise comparisons
were performed on the MSE values of the tested PTFs. Student’s
t approach at the 5% significance level was applied using the
R package agricolae. The reliability of the methods was com-
puted on both the TEST_BASIC and TEST_CHEM+ test sets,
which are described above. File S1 provides details of their
calculation.

Principles of model selection

All combinations of available input variables and statistical pre-
diction methods were tested during PTF development. We include
here only the models that were the most reliable for the tar-
geted soil hydraulic property, as determined by the series of tested
input parameters in a hierarchical order of input requirements. The
required input parameters refer to the soil properties needed to
improve the estimation reliability.

In order to recommend a method for a given soil hydraulic
property, a priority-based selection procedure was used. The most
important criterion was the model reliability, which was chosen for
each dependent variable and for combinations of input variables in
a stepwise hierarchical approach. Prediction errors of PTFs were
compared statistically to select the most reliable method. If no
significant difference was observed between models we applied a
second criterion by preferring models that use fewer input variables.
We also applied a third criterion (for practical purposes) and if the
number of input variables used in two models was the same, we
chose that which was easier to implement, from a comparison of
the computational procedure required for application. For example,
a model with fewer terminal nodes was selected for PTFs based
on RT. However, we gave preference to an LR-based model over
an RT model because it was simpler to implement. In the case of
MSs and RTs with similar reliability, preference was given to the
model that included more samples in its groups/terminal nodes. If
reliabilities of point estimation with RT and parameter estimation
with MS of water retention were similar, we used point estimation
with RT, because of its one-step straight-forward implementation.

We provide RT-based models for use with either the FAO_MOD
or the USDA texture classes with T/S regardless of the above
criteria because some data-sets of potential application may have
one classification available but no detailed data to convert it to the
other.

Results and discussion

We performed the series of statistical analyses noted earlier and
summarized the most reliable models in Table 4, including their
input parameters and model performance indicators. Table 4 lists
all tested input parameters and those ‘required’ inputs that were
eventually found to be significant in the most reliable models. In
many cases, using all available soil parameters did not improve the
performance of the model over that with fewer input variables.

Findings of the point estimation study

The RMSE values of the most reliable point estimation meth-
ods varied between 0.020 and 0.075 cm3 cm−3 for 𝜃S, 0.055 and
0.069 cm3 cm−3 for 𝜃FC, 0.043 and 0.059 cm3 cm−3 for 𝜃WP and 0.90
and 1.36 log10(cm day−1) for KS, depending on the input parameters
and PTF development method used. The ME values for 𝜃S, 𝜃FC and
𝜃WP were between −0.001 and 0.015 cm3 cm−3, thus point estima-
tions slightly under-estimated water retention values in most cases
(Table 4a–c). The PTFs developed for KS usually over-estimated
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conductivity on the TEST_BASIC set and under-estimated it on the
TEST_CHEM+ set (Table 4d).

We note that in the case of point predictions based on the same
qualitative input parameters, the reliability of models derived by the
mean statistic of developer determined groups (MS) and regression
trees (RT) was not significantly different. However, the latter always
contained fewer terminal nodes than there were MS groups; thus
RT was simpler. Therefore we gave preference to regression trees
over MSs.

The prediction of 𝜃S had similar reliability regardless of whether
the FAO_MOD or USDA texture classes were considered in
the models. Although OC improved the prediction performance
if added to texture class and T/S information, the availability
of particle size distribution (PSD) data (sand, 50–2000 μm; silt,
2–50 μm; clay, 0–2 μm content) provided more reliable models.
Prediction of 𝜃S when BD was not available was the most reliable
method with an RT model that has PSD, T/S and OC as inputs.
When BD was available, LRt models performed better than other
model types. In the absence of information on pH, the main input
of the best LRt model included PSD, T/S, OC and BD, but if pH data
were available, pH replaced OC in the best fitting models. As can be
seen from the RMSE values of models in Table 4(a), BD seems to be
the most important parameter for predicting 𝜃S, after texture or PSD
information. The inclusion of T/S in all the 𝜃S models, as well as the
significant benefit of using OC (or pH in its absence), reflects the
importance of soil structure in predicting 𝜃S: all of these properties
are related to soil structure and/or aggregate stability. The pH value,
together with bulk density (BD), appears to carry more information
about soil structure and aggregate stability than OC content and BD
(Rasiah & Kay, 1994).

In the prediction of 𝜃FC, the most important soil information
was PSD or texture class, depending on the type of information
available for prediction (Tables 4b, 5). Including BD did not
improve the reliability of 𝜃FC predictions further, possibly because
of our decision to use the matric potential at −330 cm to represent
𝜃FC. At that matric potential inter-aggregate pores at sizes that
strongly correlate with BD have already drained their water content.
Cation exchange capacity (CEC) and pH only slightly, but not
significantly, decreased the prediction errors. The 𝜃FC prediction
reliability based on the USDA texture classes and T/S was not
significantly worse than that with particle size distribution, T/S
and OC content, which is in agreement with the findings of
Rawls et al. (2003). If PSD and OC are available, we recommend
using these in an LR model rather than using the RT model with
USDA texture classes and T/S. The prediction reliability of 𝜃FC

did not increase further by including parameters additional to PSD
and OC.

As well as estimating 𝜃FC, the available soil information, PSD
and OC, was adequate to predict 𝜃WP (Tables 4c, 5). Inclusion of
T/S, BD, pH, CaCO3 or CEC did not improve the reliability of
the models significantly. The value 𝜃WP is mainly determined by
particle size distribution because at around −15 000 cm of matric
potential the pores are empty and only water adsorbed on the
surface of soil particles can be found in the soil matrix (Rajkai

et al., 1981). Clay content was the most important soil property in
the models, as the literature indicates (Rajkai et al., 1981; Wösten
et al., 2001; Bruand, 2004). As Rawls et al. (2003) found, the more
detailed information that we had about clay content (starting from
FAO_MOD texture classes, then using USDA texture classes and
finally percentage clay content), the better the prediction reliability
became. The OC content is important because of its adsorption
properties (Rawls et al., 2003) (Table 4c)). We also found a good
correlation between the common base logarithm of CEC and
𝜃WP (CF= 0.607), as found by Bruand (2004). Nevertheless, the
inclusion of CEC or its derivate did not improve the prediction of
𝜃WP significantly. The weaker impact of CEC on 𝜃WP prediction
could be caused by CEC’s relationship to the main predictors of
𝜃WP, namely clay and OC content.

Prediction reliability of log10(KS) with the suggested methods
was between 0.90 and 1.39 log10(cm day−1) in RMSE, which corre-
sponds with the reliability indices determined by Lilly et al. (2008).
In addition to soil texture or PSD, inclusion of OC content improves
the prediction of log10(KS) significantly. Including PSD instead of
FAO_MOD texture classes did not improve the prediction reliabil-
ity but the number of final groups in the model decreased. Adding
BD data as well as PSD, T/S and OC in the model slightly (but
not significantly) decreased the prediction errors of KS. Using only
the simple soil properties as inputs (Table 4d), an RT model using
PSD, T/S and OC was the most reliable method, having an RMSE
of 1.05 log10(cm day−1). If CEC and pH were also considered as
inputs, the LR model (including PSD, T/S, pH, CEC) had the signif-
icantly smallest prediction errors, tested on the TEST_CHEM+ set
(0.90 log10(cm day−1); Table 4d).

Findings of the parameter estimation study

Prediction of van Genuchten (VG) parameters to describe MRC.
We found the MSs to be more reliable than RT when only qualitative
input properties were used. The MS, using only qualitative informa-
tion, was also more reliable than LR, RT and mRT with PSD, T/S
and OC, that is, a mix of qualitative and quantitative inputs. These
results suggest that it is important to predict VG parameters simulta-
neously and linked to each other. Adding CEC and either BD or pH
increased the reliability of MRC predictions (Table 4e). The small-
est RMSE (0.046 cm3 cm−3) occurred when MRC was predicted
with LR, including transformed forms of the input parameters using
PSD, T/S, OC, BD and pH as inputs, without their interactions
(PSD+T/S+OC+BD+ pH_LRt2). Although mRT also predicts
VG parameters linked to each other, it usually had the poorest relia-
bility among the statistical methods tested when input parameters of
the models were continuous and the number of samples was small
in the training set.

Predicting log10(𝜃r + 1) with linear regression resulted in negative
𝜃r values; therefore we also tested the prediction performance while
forcing 𝜃r to be equal to 0 in the case of negative values, and
as another option used 𝜃r predicted from MSs and RTs. Based
on the reliability of the MRC predictions, it appears that the best
solution is using 𝜃r derived from an RT with only two terminal
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nodes determined by sand content. We recommend using those two
values along with LR to predict the other parameters of the MRC.

The overall ME of PTFs was between−0.007 and 0.017 cm3 cm−3

on the TEST_CHEM+ set, and close to zero when calculated for the
TEST_BASIC set. The prediction of water retention points by first
predicting VG parameters has generally over-estimated the retained
amount of water between −5 and −50 cm matric potentials and
under-estimated it between −200 and −16 000 cm matric potentials
(Figure S1a, File S1). When BD was included in the MRC model,
the prediction’s mean squared error calculated for given matric
potential ranges was improved markedly between 0 and −100 cm.

Prediction of Mualem-van Genuchten (MVG) parameters
to describe HCC. The parameters of the HCC model were devel-
oped with MS, RT and LR methods. Those with mRT are not
presented because the reliability of the mRT-based models to
predict MRC was typically inferior to that with the RT.

The RMSE values of the suggested PTFs calculated for log10(K)
in the test datasets varied between 0.66 and 0.77 log10(cm day−1).
To estimate log10(K) values, an MS that used FAO_MOD tex-
ture classes and T/S was the most reliable when tested on
the TEST_BASIC dataset, but the MS using USDA texture
classes and T/S had the best reliability when tested on the
TEST_CHEM+ dataset. For the MRC prediction, the MS based
on USDA texture classes and T/S was significantly more reliable
than the MS using FAO_MOD texture classes and T/S. This might
be because of the more detailed texture classification of the USDA
system compared with that of the FAO_MOD system. Thus the MS
developed for USDA texture classes predicts the MRC and HCC
better if USDA texture classes or PSD and T/S are available.

Introducing quantitative information and chemical properties into
the MVG prediction did not significantly improve the prediction of
the HCC. All derived prediction methods under-estimate hydraulic
conductivity (Figure S1b, File S1) close to saturation and at matric
potential values between −500 and −16 000 cm. The MEs of the
suggested HCC predictions are shown in Figure S1(b) File S1.
Under-estimation of hydraulic conductivity between 0 and −10 cm
matric potential is because of the MVG parameterization of the
HCC by fitting K0, as described by Schaap & Leij (2000).

There were no samples available for the silt and silty clay
topsoil classes, and silt and sandy clay subsoil classes in the
training dataset. To be able to apply the USDA+T/S_MS_MVG
estimations also for these soil textures, we recommend using the
MVG parameters of the following other classes. In the case of silty
clays and sandy clays we did not distinguish MVG parameters for
topsoils and subsoils. For silts there were neither topsoil nor subsoil
samples available, and we recommend the use of parameters of
another texture class. We considered two options for selecting the
texture class that had the most similar hydraulic properties: silty
clay loams or silt loams. Rajkai et al. (1981) found that among
different particle size fractions, the fine sand fraction (50–250 μm)
had the largest influence on soil water retention between 0 and
−200 cm matric potentials. Furthermore, the inflection point of
MRC is around −200 cm matric potential in most cases (Rajkai &

Kabos, 1999). As these influence the HCC indirectly, we assumed
that similarity in sand content is the most crucial factor in comparing
texture classes for the HCC prediction. Therefore, we recommend
that MVG parameters of the silty clay loam topsoil and subsoil
classes are used for the silt classes, because those classes have the
same range of sand content (0–20%).

EU-HYDI vs. HYPRES parameter estimations

To predict the MRC, the MS (class PTFs) developed from
EU-HYDI performed significantly better than the similar-type
HYPRES class PTFs. The former had an overall RMSE value of
0.067 cm3 cm−3, and the latter a value of 0.072 cm3 cm−3 when
tested on the TEST_BASIC set, which excluded the samples origi-
nating from HYPRES. Although continuous PTFs developed from
the EU-HYDI and HYPRES with the same input parameters were
not significantly different (RMSE= 0.055 and 0.056 cm3 cm−3,
respectively), the PTFs presented here have the advantage of
using null values as input variables, which is not the case for
HYPRES continuous PTFs. Furthermore, continuous PTFs based
on EU-HYDI can be also developed for cases where additional
chemical property data (pH and CEC) are available. The MRC
models with additional chemical information performed signifi-
cantly better (RMSE= 0.046 cm3 cm−3) than those of HYPRES,
which were based on texture and T/S only. This allows potentially
more accurate predictions, with the use of less commonly available
inputs, when those are present.

Unsaturated hydraulic conductivity predictions based on
EU-HYDI MSs (class PTFs) were significantly better than the
HYPRES class and continuous PTFs, with values for RMSE of
0.75, 0.96 and 0.89 log10(cm day−1), respectively.

Comparison of point and parameter estimations

To compare the prediction power of point and parameter estimations
we used the directly predicted 𝜃S, 𝜃FC and 𝜃WP with their indirect
prediction with the VG parameter estimation model. We compared
the reliability of the best point estimation methods (Table 4a–c)
with the best parameter estimations (Table 4e).

With all input combinations, we recommend that 𝜃S, 𝜃FC and
𝜃WP are predicted with point estimation. No significant differ-
ence was found between point and parameter estimation by using
FAO_MOD+T/S or USDA+T/S. However, the direct point pre-
diction is simple to implement, while calculating water reten-
tion values from the VG model requires first the application of
MRC PTF and then calculating water retention with derived VG
parameters for given matric potentials. If PSD data were avail-
able, point predictions were significantly more reliable in most
cases than parameter estimations. There were some cases when
no significant difference was found and parameter estimation was
never significantly better than point estimation. This is in agree-
ment with Børgesen & Schaap (2005), who found, in most cases,
greater RMSEs for parameter estimations than for point estima-
tions when predicting water retention at distinct matric potential
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values. Parameter estimations rely on fitted parameters, and there-
fore always have uncertainty in their goodness of fit and have greater
prediction errors than point estimations (Børgesen & Schaap, 2005).

The reliability of KS point estimations (Table 4d) and the esti-
mation of K0 from MVG (Table 4f) were not compared. Although
K0 is a matching point at saturation in the description of unsatu-
rated hydraulic conductivity, it is not necessarily equal to KS but it
is often smaller by about one order of magnitude (Schaap & Leij,
2000). Therefore the MVG model with fitted K0 is not suitable for
model flows at full saturation, where it can be affected by macrop-
ores (van Genuchten & Nielsen, 1985; Schaap et al., 2001). For the
prediction of KS we give preference to point predictions rather than
using the MVG parameter K0.

Importance of soil properties in estimating soil hydraulic
characteristics

Generally, soil texture or PSD and T/S, OC and BD were the most
important input parameters to predict soil hydraulic properties. In
fact, PSD or texture class information in combination with the
OC content or T/S information provides an adequate basis for
the prediction of soil water status in most cases. Additional soil
properties were included only in a few cases, as in the studies of
Rawls et al. (1991) and Wösten et al. (2001). Thus, the texture
type, or PSD if available, was by far the most important factor in
describing soil water retention (Tables 4a–c,e, 5). Nevertheless,
other soil properties can also play significant roles, such as BD
for the prediction of 𝜃S or MRC. The OC content is important
information needed to describe soil water properties because it
influences a number of other physical and physico-chemical soil
properties. Mineral soils with greater OC content tend to have
better soil structure, and thus increased water-holding properties,
and organic matter itself also has good water-absorption properties.
Nevertheless, the indirect effect of OC content on water retention
through soil structure requires further investigations in the future.
Information on the position of the soil in the profile (T/S) improves
the predictions of most of the hydraulic properties as well. The
importance of PSD or texture class information, OC content and
information on whether a sample is from the topsoil or subsoil is
demonstrated by their larger weighting in the prediction algorithms
of LR models and greater variable importance in RT models
(Table 4).

The importance of BD varied according to the predicted soil
hydraulic properties. It significantly improved prediction of 𝜃S and
MRC, but was not important for the estimation of 𝜃FC, 𝜃WP, KS

and HCC, as shown by Børgesen & Schaap (2005) when related
to water-retention predictions and Lilly et al. (2008) for PTFs that
predict KS. The BD is, however, also influenced by other input
variables that may also be available.

Additionally, soil chemical properties that we studied (pH, CaCO3

and CEC) were also important for prediction of some of the soil
hydraulic properties, such as 𝜃S, MRC and KS. However, they
did not improve 𝜃FC and 𝜃WP point predictions significantly or
estimation of the HCC parameter. Information on pH and CEC

improved the prediction reliability of KS and the MRC: pH might
influence soil structure (Hodnett & Tomasella, 2002; Tóth et al.,
2012), which is closely correlated to water retention close to
saturation and saturated hydraulic conductivity, and CEC is related
to the clay mineralogy and forms of organic matter (Bruand, 2004;
Botula Manyala Ilanga et al., 2013).

As well as the chemical and physical soil properties as inputs,
the measurement technique used to determine hydraulic conduc-
tivity may also influence the quality of KS and HCC predictions
(Vereecken, 2002). In EU-HYDI, both the sample sizes and mea-
surement methods were very diverse (Weynants et al., 2013), espe-
cially for hydraulic conductivity. Thus the correlation between basic
soil properties and hydraulic conductivity may not be clear from
the data subset used to derive PTFs. This may be a reason why
the very simple MSs were the most reliable method for HCC pre-
diction even though they were based on textural information and
T/S only. The reliability of estimation may improve if the data (if
the quantity allows) are pre-sorted by measurement methods and
measurement-method-specific PTFs are developed.

Model recommendation

Table 5 lists recommended methods, and also considers different
levels of input availability. From our discussion of model selection
principles, point estimation is preferred for prediction of 𝜃S, 𝜃FC

or 𝜃WP. On the other hand, if water content at matric potential
other than 0, −330 and −15 000 cm is needed we recommend that
parameter-based PTFs are used.

However, parameter estimation with MSs is recommended when
only texture is available. If PSD is available, different models are
recommended depending on the soil hydraulic property required
and the input parameters available for the prediction. Prediction
of the common base logarithm of KS is better when using point
estimations than its calculation from the HCC predictions.

If the reliability of both the MRC and the HCC is important, the
USDA+T/S_MS_HCC model based on the prior development of
the USDA+T/S_MS_MRC model is the most reliable method. If
only the FAO_MOD texture-class information is available, the rec-
ommendation changes to the FAO_MOD+T/S_MS_HCC model
based on prior development of the FAO_MOD+T/S_MS_MRC
model. If the reliability of the HCC is more important than that of
MRC, we recommend MS (class PTF) based on FAO_MOD tex-
ture classes and T/S, or the USDA texture classes and T/S if that is
the only textural classification that is available. All recommended
PTFs are included in Table S1 in File S1. An open source R soft-
ware package was developed to assist the implementation of PTFs
presented in this article and can be accessed at the European Soil
Data Centre (http://eusoils.jrc.ec.europa.eu/).

Conclusions

We developed PTFs for continental-scale applications in Europe for
a series of potential needs, and we adapted a hierarchical approach
that facilitates their use with the most commonly used spatial soil

© 2014 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 66, 226–238



New hydraulic pedotransfer functions for Europe 237

datasets of the continent. The results of our model development
provide significant improvement in the reliability of European-scale
PTFs when the most traditional input variables are used. In addition,
the importance of chemical variables (CaCO3, CEC and pH), which
were not considered in earlier predictions on this scale in Europe,
was demonstrated when predicting 𝜃S, KS and MRC parameters.
Differences in the adequacy of various statistical methods for
developing input- and output-specific soil hydraulic models were
demonstrated for a large, continental dataset, highlighting the
need for purpose-specific statistical procedures in soil hydraulic
research. To serve user needs, the best fitting, purpose-specific
models are recommended and shown by hierarchically structured
combinations of input parameters. Derived soil hydraulic PTFs
enable the preparation of a series of reliable soil hydraulic maps
for Europe using different sets of soil map information.

For further improvement of the models it is desirable to provide a
better representation of soils of Europe by including more silty soils
and sandy clay soils in the EU-HYDI in the future. It is noted, how-
ever, that scarcity of silty and sandy clay samples in the database
is primarily driven by their natural scarcity in Europe, because of
its climatic and geological conditions. While the PTFs presented
quantify the dependency of water retention and conductivity char-
acteristics on basic soil properties in Europe with better accuracy
and reliability than previous models, special-case PTFs, such as
those based on specific regions, soil types, measurement method-
ology or land use and soil management, will further improve pre-
dictions. Therefore, it is desirable that the collection and analysis of
soil hydraulic datasets that are relevant for these special aspects are
improved.

It is noted that prediction accuracy of a soil hydraulic property in
any spatial application does not only depend on the accuracy of the
used PTF but also on the quality of underlying data, including the
spatial accuracy of the map on which it is implemented.

Supporting Information

The following supporting information is available in the online
version of this article:
File S1. A new generation of hydraulic pedotransfer functions for
Europe.
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