

Assessing soil erosion rates at vineyard scale: a study case in North-West Italy using different DEM resolutions for the LS factor computation

F. Palazzi¹, M. Biddoccu¹, E. Borgogno Mondino², E. Cavallo¹

1 Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) – National Research Council of Italy (CNR), Turin, Italy 2 Department of Agricultural, Forest and Food Sciences (DISAFA) – University of Turin, Turin, Italy

ONLINE WORKSHOP ON

Introduction

- Italian vineyards are set in sloping areas
- Soil management: bare/poorly vegetated ground, spontaneous grass cover, green manure
- Increasing mechanization for crop and soil management

In Piemonte (NW Italy):

SOC stock: - 1.58 % (plain areas)

- 1.15 % (hilly areas)

(Leo et al., 2011)

Erosion rates> 15 Mg/ha*y: - Hilly areas: 40.2%

Plain areas: 23.6%

Mountains: 5%

European

Commission

(IPLA, 2009)

A = R * K * L * S * C * P

Α	average annual soil loss per area unit	(Mg ha ⁻¹ y ⁻¹)
R factor	rainfall erosivity	(MJ mm ha ⁻¹ h ⁻¹ y ⁻¹)
K factor	soil erodibility	(t h MJ ⁻¹ mm ⁻¹)
L factor	slope length	(dimensionless)
S factor	slope steepness	(dimensionless)
C factor	cover and management	(dimensionless)
P factor	support practices	(dimensionless)

- Empirical model, yet still one of the most used
- Applications for different scales of investigation
- Data can be derived from:
 - open source databases (local, ESDAC, ...)
 - field observations

LS factor is among the most important factors, and can be derived from GIS data (e.g., Digital Elevation Models -DEMs-)

European

Commission

S factor

- Effect of slope steepness on soil erosion
- Ratio of soil loss from field gradient to that from a 9% slope
- Affected by vegetation cover and soil particle sizes

L factor

- i) distance from overland flow origination to the point where slope decreases enough and deposition begins
- ii) runoff water entering a well-defined channel part of a drainage network or a constructed channel

Time-consuming for field scale assessment GIS-based procedures can help reducing operational times

... quality of data sources is essential,

... and computational procedures as well

DEM resolution plays a key role (<u>Fijałkowska</u>, <u>2021</u>, <u>Raj et al.</u>, <u>2018</u>)

Multiple and Single Flow Direction Algorithms (MFD)SFD) (Bircher et al., 2019)

For a given study area:

- Different Digital Elevation Models (DEMs) available with different spatial resolution
- Different algorithms to assess LS

ii) testing contribution of DEM resolution to LS accuracy;

comparing LS estimates;

- iii) suitability of DEM(s) and GIS to replace operator-made measurements for LS
- iv) assessing the role of LS in soil loss estimation within the RUSLE methodology

Page 6

i)

Study Area

- Pleistocenic fluvial terraces
- Highly altered gravel,
 sandy / silty-clay deposits with
 red alteration products
- Texture: clay / clay-loam
- Typic Ustorthents, fine-loamy, mixed, calcareous, mesic (USDA 2010) or Dystric Cambisols (FAO/ISRIC/ISSS 1998)
- Slopes of the fields:
 - ➤ min: 5.1%
 - max: 28.3%
- 1-2 tillages every year in CT
- Mowings in GC during season

296 m above sea level Piemonte, Italy **al**1 CT_2 CT_3 lediterranean CT_4 GC_1 GC_7 ട്രോ GC_2 GC_4 GC_8 GC_5 Experimental GC_6 Vine and Wine CIN Centre Tenuta Cannona Grass-Covered (GC) CT_5 Conventional Tillage (CT) soil management GC_9 470100 469800

44°40′N, 8°37′E

#EUsoil

Municipality of Carpeneto

Province of Alessandria

LS factor operator-driven procedure

QGIS
tools

Time consuming

#EUsoil

 Accuracy affected by the operator

LS factor automated GIS procedure

	Moore and Nieber, 1989	
Computational	·	
procedure	Desmet and Govers, 1996	
procedure	Wischmeier and Smith, 1978	WS
Type of slope	Local slope	LOC
Type of slope	Distant weighted average catchment slope	AVG
	Contour length as cell size	CS
Specific	Contour length dependent on aspect	AS
catchment area	Catchment length	CL
	Effective flow length	FL

$$LS_{MN} = 0.4 + 1 * (A/22.13)^{0.4} * (sin\theta/0.0896)^{1.3}$$

$$L_{DG} = \binom{(A+d^2)^{m+1} - A^{m+1}}{d^{m+2} * 22.13^m * x^m}$$

$$S_{DG} = 10.8 * sin\theta + 0.3$$
 $\theta < 9\%$
 $S_{DG} = 16.8 * sin\theta - 0.5$ $\theta \ge 9\%$

A = upslope contributing area (m²)

 θ = slope

d = raster resolution (m)

m = rill-interrill relevance

 $x = |\sin(Aspect)| + |\cos(Aspect)|$

For all DEMs available

$$LS_{WS} = \sqrt{\frac{A}{22.13}} * 65.41 * \sin\theta * \sin\theta + 4.56 + \sin\theta + 0.065$$

$$\theta > 3^{\circ}$$

72 LS estimates

$$LS_{WS} = \left(\frac{A}{22.13}\right)^{3\theta^{0.6}} *65.41 * \sin\theta * \sin\theta + 4.56 + \sin\theta + 0.065$$

$$41 * sin\theta * sin\theta + 4.56 + sin\theta + 0.065 \quad \theta \le 3^{\circ}$$

LS factor automated GIS procedure

Page 15

#EUsoil

European Commission

- Permanent grass-cover can decrease soil erosion risks even in sloping areas
- Down-sampling DEM affects LS assessment
- DEM resolution is fundamental...
- ... but so are the algorithm that we choose to adopt
- DEM resolution may be artificially improved by resampling raster data

The right combination of open-source data and computational procedures can replace time-consuming measuring procedures to assess parameters required by RUSLE/ORUSCAL to compute LS

This research was partially funded by: i) Fondazione Giovanni Goria (Italy), and ii) Regione Piemonte, Italian Government and EU (FEASR) in the framework of the PSR 2014-2020 project IN-GEST SOIL - Innovazione nella gestione dei suoli viticoli attraverso l'adozione di buone pratiche e strumenti di supporto alle attività di campo

Page 17

ONLINE WORKSHOP ON

