Legends

How does a legend work?

A legend explains the cartographic symbols used to construct a map and is intended to aid the understanding of the map content. Legends consist typically of a symbol or a series of symbols with specific colours or shades that are repeated on the map sheets in a consistent manner on all maps associated with the particular legend.

Construction of the legend

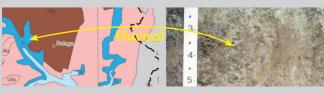
The 2006 version of the World Reference Base for Soil Resources (WRB) has been used to construct the legend of the soil maps in this atlas. The WRB recommends that the Reference Soil Group with a single prefix qualifier be used for small-scale maps (i.e. smaller than 1:1 million). This recommendation has been followed in the construction of the legend for this atlas with a few exceptions where key diagnostic information was lacking.

On this page, the Reference Soil Groups are listed alphabetically. The division within an individual Reference Soil Group follows the order of prefix qualifiers in the 2006 version of WRB (the same applies for the suffix qualifiers). A simple explanation of the main soil characteristic is presented on page 66.

For this atlas, the most prevalent soil type in each polygon is represented by a colour that corresponds to a specific WRB Reference Soil Group and a four-character code indicating the dominant characteristics of that soil (see pages 51 for a detailed descriptions of the specific soil characteristics). For example, the blue box that contains the code combination GLmo represents Mollic Gleysols on the soil maps which correspond to soils with a predominantly high water table for long periods of the year and have a nutrient- and organic rich, dark-coloured topsoil.

Cartographic symbols

International boundary Disputed boundary	
Disputed odditionly	
National capital	☐ ABUJA
Locality (by population)	
5,000,000 +	○ LAGOS
1,000,000 - 5,000,000	 Abidjan
200,000 - 1,000,000	O Nampula
100,000 - 200,000	o Gweru


Soil Maps (

The next section in the atlas contains a series of maps showing the regional distribution of WRB Reference Soil Groups across Africa.

As illustrated by the diagram below, a soil map depicts areas where soil properties, according to the classification scheme used, are similar. Hence, the light blue tones on the map correspond to the soil profile shown while the pink areas on the map correspond to a different soil type.

It is important to realise that a soil map is a two-dimensional representation of a three-dimensional object and that only the spatial or geographical change in soil properties is depicted.

Pages 64 - 66 present the legend to be used to interpret the regional maps while page 67 provides an index to the individual map sheets.

Acrisols
Alisols
Andosols
Arenosols
Calcisols
Cambisols
Chernozems
Cryosols
Durisols
Ferralsols
Fluvisols
Gleysols
Gypsisols
Histosols
Kastanozems
Leptosols
Lixisols
Luvisols
Nitisols
Phaeozems
Planosols
Plinthosols
Podzols
Regosols
Solonchaks
Solonetz
Stagnosols
Technosols
Umbrisols
Vertisols

Water Body

Acrisols		
AC	Undifferentiated Acrisols	
ACfr	Ferric Acrisols	
ACha	Haplic Acrisols	
ACpl	Plinthic Acrisols	
ACum	Umbric Acrisols	
Alisols		
ALgl	Gleyic Alisols	
ALha	Haplic Alisols	
ALpl	Plinthic Alisols	
ALum	Umbric Alisols	
Andosols		
ANsn	Silandic Andosols	
ANvi	Vitric Andosols	
ANzm	Mollic Silandic Andosols	
ANzu	Umbric Silandic Andodols	
Arenosols		
AR	Undifferentiated Arenosols	
ARab	Albic Arenosols	
ARbr	Brunic Arenosols	
ARca	Calcaric Arenosols	
ARfl	Ferralic Arenosols	
ARha	Haplic Arenosols	
ARpr	Protic Arenosols	
ARwl	Hypoluvic Arenosols	
Calcisols		
CLha	Haplic Calcisols	
CLIv	Luvic Calcisols	
CLpt	Petric Calcisols	
CLzy	Haplic Calcisols (Yermic)	
Cambisols		
CM	Undifferentiated Cambisols	
CMca	Calcaric Cambisols	
CMcr	Chromic Cambisols	
CMdy	Dystric Cambisols	
CMeu	Eutric Cambisols	
CMfl	Ferralic Cambisols	
CMgl	Gleyic Cambisols	
CMvr	Vetric Cambisols	
CMzt	Eutric Cambisols (Takyric)	
CMzy	Eutric Cambisols (Yermic)	
Chernozems		
CHcc	Calcic Chernozems	
CHIv	Luvic Chernozems	