Early Warning System for Flash Floods –
the Theoretical Background and Realization
in the Krkonoše Mts. – Czech Republic

Tesař, M.¹, Šír, M.², Fiedler, J.³ & Dvořák, I.J.¹

¹) Institute of Hydrodynamics AS CR, v.v.i., Praha, CZECH REPUBLIC
 miroslav.tesar@iol.cz

²) Jakub Krčín High School Fishery and Water Management, Třeboň, CZECH REPUBLIC

³) FIEDLER-MÁGR – Electronics for Ecology, České Budějovice, CZECH REPUBLIC
What is it a Flash Flood?

World Meteorological Organization: „… a flood of short duration with a relatively high peak discharge“.

American Meteorological Society: „… a flood that rises and falls quite rapidly with little or no advance warning, usually as the result of intense rainfall over a relatively small area“.

U.S. National Weather Service: „… a rapid and extreme flow of high water into a normally dry area, or a rapid water level rise in a stream or creek above a predetermined flood level, beginning within six hours of the causative event (e.g., intense rainfall, dam failure, ice jam)“…..
How Flash Floods Occur

Flash flooding occurs when precipitation falls rapidly on saturated soil or dry soil that has poor absorption ability. The runoff collects in gullies and streams and, as they join to form larger volumes, often forms a fast flowing front of water and debris.
Flash Flood Generation

Hydrometeorological influences
- Rain intensity and total Streamflow

Hydrological influences
- Soil moisture
- Soil permeability, soil cover hydrophoby
- Soil profile – actual retention capacity

Basin influences
- Shape and Size
- Slope
- Roughness
- Stream Density
Hydrologic influences of the ground surface can have a major impact on the timing, location, and severity of flash flooding. In some cases, runoff production processes may be more important than rainfall characteristics.

Soil moisture, and in particular the **degree of saturation** - the most important soil factor for rapid runoff and flash flooding. It has a direct influence on the infiltration process.

Permeability of the soil profile is determined by the crust formation, soil compaction, soil contraction and expansion, microbial activity, soil hydraulic conductivity, and root distribution. A commonly used indicator of soil permeability is soil texture.
Soil profiles can also influence flash flood hydrologic processes but the influence of soil profile can be small compared to soil moisture and soil permeability. Soil profile characteristics are tightly related to the capacity of the soil to store water and to the infiltration rate.
Hydrodynamic mechanism of flash floods generation

A sudden oscillating discharge of water from porous material – soil into the watercourse (known as fill and spill effect) was frequently observed in hydrological monitoring in river basins around the world.

The phase of „fill“ = filling of soil profile by water infiltrating from the rainfall. This phase is fully describable by the Richards’ equation (diffusion-like flow).

The phase of „spill“ = gravity-driven flow (based on the percolation theory) = a sudden oscillating discharge of big amount of water from porous material causes a flash flood generation.

Fill and spill mechanism
Krkonoše Mts.
September 2001

Rainfall total
Fill = 10 mm
Causes
Outflow of
Spill = 47 mm
Hydrological Consequences in the Krkonoše Mts.

Flash Flood in June 2nd, 2013
Hydrological Consequences in the Krkonoše Mts.

Flash Flood in June 2nd, 2013
Hydrological Consequences in the Krkonoše Mts.

Flash Flood in June 2nd, 2013
Early Warning System for Flash Floods

Flash floods represent forecast and detection challenges because they are not always caused simply by meteorological phenomena. Flash floods result when specific meteorological and hydrological conditions exist together.

Some countries have established Flash Flood Early Warning Systems (EWS)
Early Warning System for Flash Floods

The components of an effective EWS include:

• Detecting and forecasting hazards and developing hazard warning messages
• Assessing potential risks and integrating risk information into warning messages
• Disseminating timely, reliable, and understandable warning messages to authorities and at-risk public
• Community-based emergency planning, preparedness and training focused on eliciting an effective response to warnings to reduce potential impact on lives and livelihoods
Early Warning System for Flash Floods in the Krkonoše Mts.

This system involves:

(i) instrumentation: (1) stream gauge monitoring stations with data transfer to the internet, (2) monitoring stations (equipped by rain gauge, air and soil thermometers, soil water tensiometers and soil moisture meters) with data transfer to the internet;

(ii) software: (1) the internal software of the stream gauge and monitoring stations for the measurement, storage and transfer the data to the dispatching center, (2) software of a central data repository, (3) software for data transmission in the internet browser, (3) software for the forecasting of flood risk and sending flood alert;

(iii) dispatching center: (1) operating of the data repository, (2) forecasting of the water level for the each of connected stream gauge station, (3) sending flood alert;

(iv) handbooks and user’s Guides: (1) hydrological and soil surveying, (2) EWS design, (3) operation and maintenance of the EWS;

(v) complete projection documentation of the EWS;

(vi) installation of the EWS in a catchment;

(vii) testing and routine operation of the EWS.
Early Warning System for Flash Floods in the Krkonoše Mts.

The sophisticated early warning system (EWS) for detection of local flash floods is built in the Krkonoše Mts. in the upper part of the Úpa river with the closing profile at Horní Maršov (573–1602 m a.s.l., 81.70 km²). Additionally the catchment was extended by the Lysečinský brook basin (569–1182 m a.s.l., 18,32 km²).

The theoretical background of the Early Warning System:

The description of the Early Warning System in the Krkonoše Mts:

The described EWS is supported by the Technology Agency of the Czech Republic (Project TA02021451).
Early Warning System for Flash Floods in the Krkonoše Mts.
Monitoring of Water in the Soil Profile

State of water in the soil profile (i.e. monitoring of the water potential)

- e.g. Water Tensiometers UMS GmbH, Germany

Amount of water in the soil profile (i.e. monitoring of the soil moisture)

- e.g. Soil Moisture Meter TMS3 TOMST LTD., Czech Republic
- e.g. Soil Moisture Meter VIRRIB AMET, Czech Republic
Basic station
Modrý důl
Basic station
Rozcestí
Water stage station
Obří důl
Water stage station
Jelení potok
Water stage station

Dolní Albeřice
Water stage station Dolní Albeřice – example of the measurement

Rainfall

- 2.0mm 6.4mm 0.4mm 0.2mm 19.6mm 25.6mm 0.0mm

Water level

- Albeřický p.
Water stage station
Horní Maršov
Telemetric station H7

- Completely new telemetric station developed and manufactured in the framework of the Project No. TA02021451 supported by the Technology Agency of the Czech Republic.
- Quite negligible electricity consumption (telemetric station is able to work without the battery exchange 1 year including the regular data transfer via GSM Modem).
- Telemetric station H7 can be equipped by both GSM and radio modules for the data transfer.
- Telemetric station H7 is equipped by the graphical coloured tactile display.
- 100 recording channels.
- ... and a lot of more features.
Thanks for your attention