Documents

Over the years, the JRC has produced many publications. These are found in this section. They have been sub-divided in various categories (see Subcategory buttons below). All more than 550 documents can also be inspected irrespective of the category (see 'All documents' below).

Publications in Journals include more than 390 published papers from the Soil Group in the JRC (EU Soil Observatory). Most of the papers refer to the last 10 years (2013-2023). In many cases the papers document the datasets published in ESDAC.

As example statistics, Since the establishement of the EUSO,  the group published:

  • 23 papers in 2020,
  • 27 papers in 2021
  • 40 papers in 2022
  • 46 papers in 2023

Most of them in high impact journals including Nature Communicaitons, Climate Change, Global Change Biology, etc. Almost all the publications are Open Access. As publications, we present articles published in peer-review journals indexed in Scopus or Web of Science.

 

Filters

Go Back To

All Documents

Displaying 201 - 225 of 550 | Show 25 | 50 | All results per page.
Pedotransfer functions for predicting organic carbon in subsurface horizons of European soils
Pedotransfer functions for predicting organic carbon in subsurface horizons of European soils
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

There is an increasing demand for information on organic carbon (OC) in subsurface horizons, because subsurface horizons down to the bedrock can contribute to more than half of soil carbon stocks. In this study, we developed pedotransfer functions (PTFs) for predicting OC content in subsurface horizons of European soils. We used a dataset with a wide geographical coverage in Europe. The dataset was stratified sequentially into land‐cover and soil categories. For each category, PTFs were developed by multiple linear regression with the main soil and climatic factors of soil OC storage as predictor variables: OC in topsoil (0–20 cm), depth of subsurface horizons, texture and bulk density (BD) in subsurface horizons, and mean annual temperature and precipitation. Three land‐cover categories were separated: woodland, a combined category of grassland and non‐permanent arable land, and permanent arable land. For the combined land‐cover category, two soil categories were identified: (i) soils with clay‐rich subsoil and soils with little horizon development and (ii) organic‐rich soils and soils rich in Fe and Al compounds. The adjusted R2 of all PTFs was above 0.62. When PTFs were applied to independent data, the adjusted R2 was above 0.51 for all of them. The PTFs showed good prediction ability, with root mean square error (RMSE) values between 2.43 and 13.82 g C kg−1 soil. The adjusted R2 and RMSE of PTFs were better when BD was used as a predictor variable. The PTFs could be implemented easily for applications at the continental scale in Europe.

https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12464

Complementing the top soil information of the Land Use/Land Cover Area Frame Survey (LUCAS) with modelled N2O emissions
Complementing the top soil information of the Land Use/Land Cover Area Frame Survey (LUCAS) with modelled N2O emissions
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

Two objectives of the Common Agricultural Policy post-2013 (CAP, 2014–2020) in the European Union (EU) are the sustainable management of natural resources and climate smart agriculture. To understand the CAP impact on these priorities, the Land Use/Cover statistical Area frame Survey (LUCAS) employs direct field observations and soil sub-sampling across the EU. While a huge amount of information can be retrieved from LUCAS points for monitoring the environmental status of agroecosystems and assessing soil carbon sequestration, a fundamental aspect relating to climate change action is missing, namely nitrous oxide (N2O) soil emissions. To fill this gap, we ran the DayCent biogeochemistry model for more than 11’000 LUCAS sampling points under agricultural use, assessing also the model uncertainty. The results showed that current annual N2O emissions followed a skewed distribution with a mean and median values of 2.27 and 1.71 kg N ha-1 yr-1, respectively. Using a Random Forest regression for upscaling the modelled results to the EU level, we estimated direct soil emissions of N2O in the range of 171–195 Tg yr-1 of CO2eq. Moreover, the direct regional upscaling using modelled N2O emissions in LUCAS points was on average 0.95 Mg yr-1 of CO2eq. per hectare, which was within the range of the meta-model upscaling (0.92–1.05 Mg ha-1 yr-1 of CO2eq). We concluded that, if information on management practices would be made available and model bias further reduced by N2O flux measurement at representative LUCAS points, the combination of the land use/soil survey with a well calibrated biogeochemistry model may become a reference tool to support agricultural, environmental and climate policies.

ttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176111

Discovering historical rainfall erosivity with a parsimonious approach: A case study in Western Germany
Discovering historical rainfall erosivity with a parsimonious approach: A case study in Western Germany
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

An in-depth analysis of the interannual variability of storms is required to detect changes in soil erosive power of rainfall, which can also result in severe on-site and off-site damages. Evaluating long-term rainfall erosivity is a challenging task, mainly because of the paucity of high-resolution historical precipitation observations that are generally reported at coarser temporal resolutions (e.g., monthly to annual totals). In this paper we suggest overcoming this limitation through an analysis of long-term processes governing rainfall erosivity with an application to datasets available the central Ruhr region (Western Germany) for the period 1701–2011. Based on a parsimonious interpretation of seasonal rainfall-related processes (from spring to autumn), a model was derived using 5-min erosivity data from 10 stations covering the period 1937–2002, and then used to reconstruct a long series of annual rainfall erosivity values. Change-points in the evolution of rainfall erosivity are revealed over the 1760s and the 1920s that mark three sub-periods characterized by increasing mean values. The results indicate that the erosive hazard tends to increase as a consequence of an increased frequency of extreme precipitation events occurred during the last decades, characterized by short-rain events regrouped into prolonged wet spells.

https://www.sciencedirect.com/science/article/pii/S0022169416307296

Optimizing the delivery of multiple ecosystem goods and services in agricultural systems
Optimizing the delivery of multiple ecosystem goods and services in agricultural systems
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017
Agricultural land is subjected to a variety of societal pressures, as demands for food, animal feed, and biomass production increase, with an added requirement to simultaneously maintain natural areas, and mitigate climatic and environmental impacts globally (Tilman et al., 2002; Pretty, 2008; Wang and Swallow, 2016). The biotic elements of agricultural systems interact with the abiotic environment to generate a number of ecosystem functions that offer services benefiting humans across many scales of time and space (Swinton et al., 2007; Power, 2010). The intensification of agriculture, particularly of that founded on fossil-fuel derived inputs, generally reduces biodiversity, including soil biodiversity (Tsiafouli et al., 2015) and impacts negatively upon a number of regulating and supporting ecosystem services (Zhang et al., 2007). There is a global need toward achieving sustainable agricultural systems, highlighted also in the UNs' Sustainable Development Goals, where among their targets they state that by 2030 we should globally “ensure sustainable food production systems and implement resilient agricultural practices that increase productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality” (UN-DESA/DSD, 2014).
 
There is hence an evident need for management regimes that enhance both agricultural production and the provision of multiple ecosystem services. The articles of this Research Topic enhance our knowledge of how management practices applied to agricultural systems affect the delivery of multiple ecosystem services and how trade-offs between provisioning, regulating, and supporting ecosystem services can be handled both above- and below-ground, and across multiple scales of space and time. They also show the diversity of topics that need to be considered within the framework of ecosystem services delivered by agricultural systems, from knowledge on basic concepts and newly-proposed frameworks (§1), to a focus on specific ecosystem types such as grasslands and high nature-value farmlands (§2), pollinator habitats (§3), and soil habitats (§4).

https://www.frontiersin.org/articles/10.3389/fevo.2017.00097/full

Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system
Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes.

https://www.sciencedirect.com/science/article/pii/S0048969717303431

Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha−1 h−1 yr−1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April–September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

https://www.sciencedirect.com/science/article/pii/S0022169417301439

A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach
A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017
Field measurements and observations have shown that wind erosion is a threat for numerous arable lands in the European Union (EU). Wind erosion affects both the semi‐arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Yet, there is still a lack of knowledge, which limits the understanding about where, when and how heavily wind erosion is affecting European arable lands. Currently, the challenge is to integrate the insights gained by recent pan‐European assessments, local measurements, observations and field‐scale model exercises into a new generation of regional‐scale wind erosion models. This is an important step to make the complex matter of wind erosion dynamics more tangible for decision‐makers and to support further research on a field‐scale level. A geographic information system version of the Revised Wind Erosion Equation was developed to (i) move a step forward into the large‐scale wind erosion modelling; (ii) evaluate the soil loss potential due to wind erosion in the arable land of the EU; and (iii) provide a tool useful to support field‐based observations of wind erosion. The model was designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution. The average annual soil loss predicted by geographic information system Revised Wind Erosion Equation in the EU arable land totalled 0·53 Mg ha−1 y−1, with the second quantile and the fourth quantile equal to 0·3 and 1·9 Mg ha−1 y−1, respectively. The cross‐validation shows a high consistency with local measurements reported in literature

https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2588

An assessment of the global impact of 21st century land use change on soil erosion
An assessment of the global impact of 21st century land use change on soil erosion
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

Human activity and related land use change are the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions. Here we present an unprecedentedly high resolution (250 × 250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. We challenge the previous annual soil erosion reference values as our estimate, of 35.9 Pg yr−1 of soil eroded in 2012, is at least two times lower. Moreover, we estimate the spatial and temporal effects of land use change between 2001 and 2012 and the potential offset of the global application of conservation practices. Our findings indicate a potential overall increase in global soil erosion driven by cropland expansion. The greatest increases are predicted to occur in Sub-Saharan Africa, South America and Southeast Asia. The least developed economies have been found to experience the highest estimates of soil erosion rates.

https://www.nature.com/articles/s41467-017-02142-7

Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area
Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017

Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions < 20 μm one year after the application of biochar. Biochar-C stored in clay-size fractions (0.2–2 μm, 0.05–0.2 μm, < 0.05 μm) was only 14%. Even so, we observed that biochar-C increased with decreasing particle-size in clay-size fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2–20 μm, 0.2–2 μm, 0.05–0.2 μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction < 0.05 μm onto biochar particles. The results suggested that interactions between biochar, minerals and pre-existing organic matter already occurred in the first year.

https://www.sciencedirect.com/science/article/pii/S0048969717303698

Soil Functions in Earth’s Critical Zone: Key Results and Conclusions
Soil Functions in Earth’s Critical Zone: Key Results and Conclusions
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2017
This chapter summarizes the methods, results, and conclusions of a 5-year research project (SoilTrEC: Soil Transformations in European Catchments) on experimentation, process modeling, and computational simulation of soil functions and soil threats across a network of European, Chinese, and United States Critical Zone Observatories (CZOs). The study focused on the soil functions of biomass production, carbon storage, water storage and transmission, water filtration, transformation of nutrients, and maintaining habitat and genetic diversity.
 
The principal results demonstrate that soil functions can be quantified as biophysical flows and transformations of material and energy. The functions can be simulated with mathematical models of soil processes within the soil profile and at the critical zone interfaces with vegetation and atmosphere, surface waters and the below-ground vadose zone and groundwater. A new dynamic model for soil structure development, together with data sets from the CZOs, demonstrate both seasonal fluctuations in soil structure dynamics related to vegetation dynamics and soil carbon inputs, and long-term trends (decadal) in soil carbon storage and soil structure development.
 
Cross-site comparison for 20 soil profiles at seven field sites with variation in soil type, lithology, land cover, land use, and climate demonstrate that sites can be classified, using model parameter values for soil aggregation processes together with climatic conditions and soil physical properties, along a trajectory of soil structure development from incipient soil formation through productive land use to overly intensive land use with soil degradation.
 
A new modeling code, the Integrated Critical Zone model, was applied with parameter sets developed from the CZO site data to simulate the biophysical flows and transformations that quantify multiple soil functions. Process simulations coupled the new model for soil structure dynamics with existing modeling approaches for soil carbon dynamics, nutrient transformations, vegetation dynamics, hydrological flow and transport, and geochemical equilibria and mineral weathering reactions. Successful calibration, testing, and application of the model with data sets from horticulture plot manipulation experiments demonstrate the potential to apply modeling and simulation to the scoping and design of new practices and policy options to enhance soil functions and reduce soil threats worldwide. Köppen–Geiger Classification).

https://www.sciencedirect.com/science/article/pii/S0065211316301249

Soil threats in Europe: Status, methods, drivers and effects on ecosystem services
Soil threats in Europe: Status, methods, drivers and effects on ecosystem services
Resource Type: Maps & Documents, Documents, Scientific-Technical Reports
Author: Jannes Stolte, Mehreteab Tesfai, Lillian Øygarden, Sigrun Kværnø (NIBIO), Jacob Keizer, Frank Verheijen (University of Aveiro), Panos Panagos, Cristiano Ballabio (JRC), Rudi Hessel (Alterra WUR)
Year: 2016

This report presents the result of WP2 of the RECARE project. One of the objectives of WP2 (Base for RECARE data collection and methods) is to provide an improved overview of existing information on soil threats and degradation at the European scale. The report is written by a group of experts from the RECARE team, coordinated by Bioforsk. In total, 60 persons were included in the process of writing, reviewing and editing the report. Eleven soil threats were identified for the report. These soil threats are soil erosion by water, soil erosion by wind, decline of organic matter (OM) in peat, decline of OM in minerals soils, soil compaction, soil sealing, soil contamination, soil salinization, desertification, flooding and landslides and decline in soil biodiversity.
Editors: Jannes Stolte, Mehreteab Tesfai, Lillian Øygarden, Sigrun Kværnø (NIBIO), Jacob Keizer, Frank Verheijen (University of Aveiro), Panos Panagos, Cristiano Ballabio (JRC), Rudi Hessel (Alterra WUR)
EUR27607

LUCAS Soil Component: proposal for analysing new physical, chemical and biological soil parameters
LUCAS Soil Component: proposal for analysing new physical, chemical and biological soil parameters
Resource Type: Maps & Documents, Documents, Scientific-Technical Reports
Author: Fernández-Ugalde O., Jones A., Tóth G., Orgiazzi A., Panagos P., Eiselt B.
Year: 2016
Publisher: European Commission, Joint Research Centre
Language: en
The European Commission launched a soil assessment component to the periodic LUCAS Land Use/Land Cover Area Frame Survey in 2009. In 2015, the Topsoil Survey was repeated in the same set of points of LUCAS 2009/2012 for monitoring changes in topsoil physical and chemical parameters across the EU. Currently, the European Commission is working on the organization of the upcoming LUCAS Soil Surveys (2018). This technical report is a proposal for analysing new physical, chemical and biological soil parameters within the forthcoming LUCAS Soil Surveys. Soil biodiversity is a key parameter that needs to be added to LUCAS Soil Surveys, due to the contribution of the soil biological community to soil functions such as food and biomass production, genetic pool for developing novel pharmaceuticals, and climate regulation. Among physical properties, bulk density is necessary to assess soil compaction and to estimate soil organic carbon stock in the EU. Field measurements such as signs of soil erosion and thickness of organic layer in Histosols is also important to assess two critical soil degradation processes in the EU: soil erosion and organic carbon decline due to land use changes and land take of Histosols. Finally, it could be interesting to organize a survey of soil profiles to collect information that will help to understand soil-forming processes and to evaluate soil ability for carbon sequestration, nutrient cycling, water storage, and contaminant filtering.
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
Resource Type: Maps & Documents, Documents, Publications in Journals
Year: 2016

Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950–2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios.

https://www.sciencedirect.com/science/article/pii/S0048969716305095

Mapping earthworm communities in Europe
Mapping earthworm communities in Europe
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Existing data sets on earthworm communities in Europe were collected, harmonized, collated, modelled and depicted on a soil biodiversity map. Digital Soil Mapping was applied using multiple regressions relating relatively low density earthworm community data to soil characteristics, land use, vegetation and climate factors (covariables) with a greater spatial resolution. Statistically significant relationships were used to build habitat–response models for maps depicting earthworm abundance and species diversity. While a good number of environmental predictors were significant in multiple regressions, geographical factors alone seem to be less relevant than climatic factors. Despite differing sampling protocols across the investigated European countries, land use and geological history were the most relevant factors determining the demography and diversity of the earthworms. Case studies from country-specific data sets (France, Germany, Ireland and The Netherlands) demonstrated the importance and efficiency of large databases for the detection of large spatial patterns that could be subsequently applied at smaller (local) scales.

https://www.sciencedirect.com/science/article/abs/pii/S0929139315300688

 

Selection of biological indicators appropriate for European soil monitoring
Selection of biological indicators appropriate for European soil monitoring
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

The selection of biological indicators for monitoring progress towards policy goals for soil quality should be without bias and in line with individual scenarios of need. Here we describe the prescription of a suite of appropriate indicators for potential application in such monitoring schemes across Europe. We applied a structured framework of assessment and ranking (viz. a ‘logical sieve’), building upon published data and a new survey taken from a wide section of the global soil biodiversity research and policy community.

The top ten indicators included four indicators of biodiversity (three microbial and one meso-faunal) by various methods of measurement, and three indicators of ecological function (Multiple enzyme assay, Multiple substrate-induced respiration profiling, and ‘Functional genes by molecular biological means’). Within the techniques assessed, seven out of the top ten indicators made use of molecular methods.

https://www.sciencedirect.com/science/article/abs/pii/S0929139315300585

 

A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity
A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Because of the increasing pressures exerted on soil, below-ground life is under threat. Knowledge-based rankings of potential threats to different components of soil biodiversity were developed in order to assess the spatial distribution of threats on a European scale. A list of 13 potential threats to soil biodiversity was proposed to experts with different backgrounds in order to assess the potential for three major components of soil biodiversity: soil microorganisms, fauna, and biological functions. This approach allowed us to obtain knowledge-based rankings of threats. These classifications formed the basis for the development of indices through an additive aggregation model that, along with ad-hoc proxies for each pressure, allowed us to preliminarily assess the spatial patterns of potential threats. Intensive exploitation was identified as the highest pressure. In contrast, the use of genetically modified organisms in agriculture was considered as the threat with least potential. The potential impact of climate change showed the highest uncertainty. Fourteen out of the 27 considered countries have more than 40% of their soils with moderate-high to high potential risk for all three components of soil biodiversity. Arable soils are the most exposed to pressures. Soils within the boreal biogeographic region showed the lowest risk potential. The majority of soils at risk are outside the boundaries of protected areas. First maps of risks to three components of soil biodiversity based on the current scientific knowledge were developed. Despite the intrinsic limits of knowledge-based assessments, a remarkable potential risk to soil biodiversity was observed. Guidelines to preliminarily identify and circumscribe soils potentially at risk are provided. This approach may be used in future research to assess threat at both local and global scale and identify areas of possible risk and, subsequently, design appropriate strategies for monitoring and protection of soil biota.

https://www.sciencedirect.com/science/article/pii/S004896971531247X

 

A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe
A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

The establishment of the range of soil biodiversity found within European soils is needed to guide EU policy development regarding the protection of soil. Such a base-line should be collated from a wide-ranging sampling campaign to ensure that soil biodiversity from the majority of soil types, land-use or management systems, and European climatic (bio-geographical zones) were included. This paper reports the design and testing of a method to achieve the large scale sampling associated with the establishment of such a baseline, carried out within the remit of the EcoFINDERS project, and outlines points to consider when such a task is undertaken.

Applying a GIS spatial selection process, a sampling campaign was undertaken by 13 EcoFINDERS partners across 11 countries providing data on the range of indicators of biodiversity and ecosystem functions including; micro and meso fauna biodiversity, extracellular enzyme activity, PLFA and community level physiological profiling (MicroResp™ and Biolog™). Physical, chemical and bio-geographical parameters of the 81 sites sampled were used to determine whether the model predicted a wide enough range of sites to allow assessment of the biodiversity indicators tested.

Discrimination between the major bio-geographical zones of Atlantic and Continental was possible for all land-use types. Boreal and Alpine zones only allowed discrimination in the most common land-use type for that area e.g. forestry and grassland sites, respectively, while the Mediterranean zone did not have enough sites sampled to draw conclusions across all land-use types. The method used allowed the inclusion of a range of land-uses in both the model prediction stage and the final sites sampled. The establishment of the range of soil biodiversity across Europe is possible, though a larger targeted campaign is recommended. The techniques applied within the EcoFINDERS sampling would be applicable to a larger campaign

https://www.sciencedirect.com/science/article/abs/pii/S0929139315300342

Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution
Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha−1 yr−1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha−1 yr−1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of −2.28 and +0.79 Tg yr−1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.

The LUCAS 2012 TOPSOIL survey and derived cropland and grassland soil properties of Bulgaria and Romania
The LUCAS 2012 TOPSOIL survey and derived cropland and grassland soil properties of Bulgaria and Romania
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016
As part of the 2012 Land Use/Land Cover Area Frame Survey (LUCAS), topsoil samples were collected in Bulgaria and
Romania using the same methodology as for other EU Member States in an equivalent survey carried out in 2009. In total, 664
Bulgarian and 1384 Romanian samples were collected which enabled a comparative assessment of topsoil properties under
different land covers within, and between, these countries, as well as in a broader European context. The samples were analysed
for basic soil properties, including particle size distribution, pH, organic carbon, carbonates, nitrogen, phosphorus, potassium and
cation exchange capacity together with multispectral signatures. The current paper describes the LUCAS Topsoil 2012 project
and provides both an overview of topsoil properties of cropland and grassland in Bulgaria and Romania, together with a
comparative assessment with earlier findings with the analysis of data from other 25 EU Member States and data from small
scale European soil database. Results show similarities with data from Member States with comparable climatic conditions in
properties where non-anthropogenic soil forming factors play major role (texture, pH, calcium-carbonate, soil organic carbon
content). There are considerable variations in certain soil properties between different land use types, (e.g. soil organic carbon
content in croplands and grasslands in Romania; or potassium content in croplands and grassland in both countries). However,
the most remarkable facts drawn from the current study are the very low phosphorus content in agricultural land in the two
countries relative to other EU Member States, the significantly lower contents of organic carbon compared to modelled data of
literature and legacy national data and the difference in the distribution of texture classes compared to European datasets

http://www.eemj.icpm.tuiasi.ro/pdfs/vol15/no12/10_91_Toth_14.pdf

Towards a pan-European assessment of land susceptibility to wind erosion
Towards a pan-European assessment of land susceptibility to wind erosion
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Understanding spatial and temporal patterns in land susceptibility to wind erosion is essential to design effective management strategies to control land degradation. The knowledge about the land surface susceptible to wind erosion in European contexts shows significant gaps. The lack of researches, particularly at the landscape to regional scales, prevents national and European institutions from taking actions aimed at an effective mitigating of land degradation. This study provides a preliminary pan‐European assessment that delineates the spatial patterns of land susceptibility to wind erosion and lays the groundwork for future modelling activities. An Index of Land Susceptibility to Wind Erosion (ILSWE) was created by combining spatiotemporal variations of the most influential wind erosion factors (i.e. climatic erosivity, soil erodibility, vegetation cover and landscape roughness). The sensitivity of each input factor was ranked according to fuzzy logic techniques. State‐of‐the‐art findings within the literature on soil erodibility and land susceptibility were used to evaluate the outcomes of the proposed modelling activity. Results show that the approach is suitable for integrating wind erosion information and environmental factors. Within the 34 European countries under investigation, moderate and high levels of land susceptibility to wind erosion were predicted, ranging from 25·8 to 13·0 M ha, respectively (corresponding to 5·3 and 2·9% of total area). New insights into the geography of wind erosion susceptibility in Europe were obtained and provide a solid basis for further investigations into the spatial variability and susceptibility of land to wind erosion across Europe. 

https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2318

Soil conservation in Europe: Wish or Reality?
Soil conservation in Europe: Wish or Reality?
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Nearly all of Europe is affected by soil erosion. A major policy response is required to reverse the impacts of erosion in degraded areas, particularly in light of the current climate change and water crisis. Soil loss occurs not because of any lack of knowledge on how to protect soils, but a lack in policy governance. The average rate of soil loss by sheet and rill erosion in Europe is 2·46 Mg ha−1 yr−1. To mitigate the impacts of soil erosion, the European Union's Common Agricultural Policy has introduced conservation measures which reduce soil loss by water erosion by 20% in arable lands. Further economic and political action should rebrand the value of soil as part of ecosystem services, increase the income of rural land owners, involve young farmers and organize regional services for licensing land use changes. In a changing World of 9 billion people with the challenge of climate change, water scarcity and depletion of soil fertility, the agriculture economy should evolve taking into account environmental and ecological aspects.

https://onlinelibrary.wiley.com/doi/full/10.1002/ldr.2538

Mapping regional patterns of large forest fires in the Wildland-Urban Interface areas in Europe
Mapping regional patterns of large forest fires in the Wildland-Urban Interface areas in Europe
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland–Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires.

https://www.sciencedirect.com/science/article/pii/S0301479716300548

Rainfall erosivity in Italy: A national scale spatio-temporal assessment
Rainfall erosivity in Italy: A national scale spatio-temporal assessment
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

 

Soil erosion by water is a serious threat for the Mediterranean region. Raindrop impacts and consequent runoff generation are the main driving forces of this geomorphic process of soil degradation. The potential ability for rainfall to cause soil loss is expressed as rainfall erosivity, a key parameter required by most soil loss prediction models. In Italy, rainfall erosivity measurements are limited to few locations, preventing researchers from effectively assessing the geography and magnitude of soil loss across the country. The objectives of this study were to investigate the spatio-temporal distribution of rainfall erosivity in Italy and to develop a national-scale grid-based map of rainfall erosivity. Thus, annual rainfall erosivity values were measured and subsequently interpolated using a geostatistical approach. Time series of pluviographic records (10-years) with high temporal resolution (mostly 30-min) for 386 meteorological stations were analysed. Regression-kriging was used to interpolate rainfall erosivity values of the meteorological stations to an Italian rainfall erosivity map (500-m). A set of 23 environmental covariates was tested, of which seven covariates were selected based on a stepwise approach (mostly significant at the 0.01 level). The interpolation method showed a good performance for both the cross-validation data set ( = 0.777) and the fitting data set (R2 = 0.779)

https://www.tandfonline.com/doi/full/10.1080/17538947.2016.1148203

Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment
Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

Soil contamination is one of the greatest concerns among the threats to soil resources in Europe and globally. Despite of its importance there was only very course scale (1/5000 km2) data available on soil heavy metal concentrations prior to the LUCAS topsoil survey, which had a sampling density of 200 km2. Based on the results of the LUCAS sampling and auxiliary information detailed and up-to-date maps of heavy metals (As, Cd, Cr, Cu, Hg, Pb, Zn, Sb, Co and Ni) in the topsoil of the European Union were produced. Using the maps of heavy metal concentration in topsoil we made a spatial prediction of areas where local assessment is suggested to monitor and eventually control the potential threat from heavy metals. Most of the examined elements remain under the corresponding threshold values in the majority of the land of the EU. However, one or more of the elements exceed the applied threshold concentration on 1.2 M km2, which is 28.3% of the total surface area of the EU. While natural backgrounds might be the reason for high concentrations on large proportion of the affected soils, historical and recent industrial and mining areas show elevated concentrations (predominantly of As, Cd, Pb and Hg) too, indicating the magnitude of anthropogenic effect on soil quality in Europe.

https://www.sciencedirect.com/science/article/pii/S0048969716310452

Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments
Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments
Resource Type: Documents, Publications in Journals, Maps & Documents
Year: 2016

As a follow up and an advancement of the recently published Rainfall Erosivity Database at European Scale (REDES) and the respective mean annual R-factor map, the monthly aspect of rainfall erosivity has been added to REDES. Rainfall erosivity is crucial to be considered at a monthly resolution, for the optimization of land management (seasonal variation of vegetation cover and agricultural support practices) as well as natural hazard protection (landslides and flood prediction). We expanded REDES by 140 rainfall stations, thus covering areas where monthly R-factor values were missing (Slovakia, Poland) or former data density was not satisfactory (Austria, France, and Spain). The different time resolutions (from 5 to 60 min) of high temporal data require a conversion of monthly R-factor based on a pool of stations with available data at all time resolutions. Because the conversion factors show smaller monthly variability in winter (January: 1.54) than in summer (August: 2.13), applying conversion factors on a monthly basis is suggested. The estimated monthly conversion factors allow transferring the R-factor to the desired time resolution at a European scale. The June to September period contributes to 53% of the annual rainfall erosivity in Europe, with different spatial and temporal patterns depending on the region. The study also investigated the heterogeneous seasonal patterns in different regions of Europe: on average, the Northern and Central European countries exhibit the largest R-factor values in summer, while the Southern European countries do so from October to January. In almost all countries (excluding Ireland, United Kingdom and North France), the seasonal variability of rainfall erosivity is high. Very few areas (mainly located in Spain and France) show the largest from February to April. The average monthly erosivity density is very large in August (1.67) and July (1.63), while very small in January and February (0.37). This study addresses the need to develop monthly calibration factors for seasonal estimation of rainfall erosivity and presents the spatial patterns of monthly rainfall erosivity in European Union and Switzerland. Moreover, the study presents the regions and seasons under threat of rainfall erosivity.

https://www.mdpi.com/2073-4441/8/4/119